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ABSTRACT

Research was conducted using multiple sensors with an algorithm to detect fires more
quickly than currently available smoke detectors while also decreasing the susceptibility to
unnecessary alarms. The effort involved the production of signatures from three types of
sources: flaming fires, non-flaming fires and non-fire, nuisance sources, followed by
analysis to recognize signature patterns for the three types of sources. The first phase of
research consisted of establishing the feasibility of distinguishing between signatures from
fire and non-fire sources using a small-scale apparatus. The second phase consisted of
introducing the signatures in a 12 ft square room with a height of 8 ft. Measurements
included CQ, CO,, and O, concentrations, presence of oxidizable gases, light obscuration
and temperature. The signatures measured could be associated with the three types of
sources. Using a multivariate statistical analysis, the response time of a prototype detector
was appreciably less than that of commercially available detectors, with a significant
reduction in unnecessary alarm susceptibility. In the third phase, pairs of sources were
provided simultaneously to determine if a nuisance source could mask the signature from a
fire source and if two nuisance sources provide a signature similar to that from a fire.
Results indicate that the ratio of the CO to CO, concentrations is representative of flaming
fire sources and to a limited extent for non-flaming fire sources, independent of the
presence of a nuisance source.



I. Background

Since 1992, research has been conducted at the University of Maryland to investigate the
use of multiple sensors with an algorithm to detect fires more quickly than currently
available smoke detectors while also decreasing the susceptibility to unnecessary alarms.
This work, supported by the Building and Fire Research Laboratory of the National
Institute of Standards and Technology, has been conducted in three phases. The research
was conducted by an interdisciplinary team from the Departments of Fire Protection
Engineering and Chemical Engineering. The team within the Department of Fire
Protection Engineering was responsible for conducting the experimental work involving
the production of signatures from three types of sources: flaming fires, non-flaming fires
and products representing nuisance sources (non-fire). This included selection of the
sources, formulation of a protocol for generation of the signatures, selection of sensors
and data collection. The Chemical Engineering team was responsible for data analysis to
recognize signature patterns for the three types of sources.

The first phase of research consisted of establishing the feasibility of distinguishing
between signatures from fire and non-fire sources using a small-scale apparatus. The
second phase of research consisted of introducing the signatures from the sources in a 12
ft square room with a height of 8 ft. A total of 87 large-scale tests were conducted
involving a variety of mechanisms to produce the signature, depending upon the
characteristics of the source. For example, flaming fires were generally initiated via a
flaming ignition of the sample, while signatures from smoldering fires were produced by
placing the source on a hot plate. Non-fire sources were introduced using aerosol cans,
hot plates, and small kitchen appliances. Sensors included measurements of CO, CO2,
and O2 concentrations, presence of oxidizable gases, light obscuration and temperature.

In the second phase, each of the sources were introduced alone in the tests. In the third
phase of research, pairs of sources were provided. Combinations included either a flaming
or a non-flaming fire source with a nuisance source or two nuisance sources. The
purposes of the third phase were to determine if the presence of a nuisance source could
mask the signature from a fire source and if two nuisance sources could provide a
signature similar to that from a fire.

As a result of the second phase of research, the signatures measured by the array of
sensors could be associated with the three types of sources. Using a multivariate
statistical analysis as the basis of the intelligence algorithm, the response time of a
prototype detector was appreciably less than that of the commercially available detectors,
with a significant reduction in unnecessary alarm susceptibility. Results from the third
phase indicate that the ratio of the CO to CO2 concentrations is especially representative
of a particular flaming fire source and to a limited extent for a non-flaming fire source,
independent of the presence of a nuisance source.

The final report is divided into the following three sections:



e overview of experiments to document signatures of fire and non-fire sources
e overview of methods to process sensor data for smart fire detection
e publications associated with the project
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5. Hamburger (approximately 70 grams)

Three sets of procedures were followed for the nuisance sources because
of the inherent characteristics of each source. At the completion of monitoring
the ambient conditions for 2 minutes, each source was applied. One procedure
was used for the disinfectant, glass cleaner and hairspray experiments. The
application of these sources consisted of vigorously spraying the sample
throughou; the space for 90 seconds, allowing diffusion to transport the sources
closer to the sensors and analyzers.

The next procedure was for the boiling water. A metal container holding
500 ml of water was placed on a hot plate outside of the test room and covered.
The water was brought to a boil and then carefully transported into the test room
and the cover removed. The water was boiled for approximately 10 minutes.
The power source for the hotplate was then shut off. At the completion of the
each test, the remaining water was measured. Indicating that an average of 150
ml was introduced into the test room.

The final procedure was for the hamburger experiments. At the
completion of the ambient period, a hot plate, at approximately 350°C, was

placed on the load cell, the hamburger was then placed on the hot plate with a

85






Section I

Overview of Experiments to Document Signatures of Fire and

Non-Fire Sources
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A series of large-scale tests were conducted in a 3.6 x 3.6 x 2.44 m test
facility. The test scenario involved 8 sources tested both individually and in
combinations, resulting in 24 scenarios. The instrumentation for this study
consisted of CO, CO,, and O, analyzers, two Taguchi gas sensors,
thermocouples and a photocell.

The results indicate that additional sensors are required to correctly
discriminate between fire and nuisance signatures in tests with multiple sources.
The use of CO and CO3 signatures the CO/CO> are effective for discriminating

between flaming and pyrolysing solid sources.
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CHAPTERI - INTRODUCTION

1.1 Problem Statement

The use of smoke detectors in the residential environment was established
in the United States (U.S.), in the early 1970’s, as an effort to reduce the loss of
life due to fires in the home. Approximately 6000 lives have been lost each year,
for the past 10 years, in the U.S. as a result of fires, with an outstanding 79%
contribution due to residential fires (Hall, 1991). The Consumer Product Safety
Commission (CPSC, 1995) has indicated that almost 4,000 deaths and over
21,000 injuries are caused by residential structure fires annually. Initially, the use
of residential smoke detectors resulted in a reduction in the number of deaths and
property losses caused by residential fires (Hall, 1991).

Smoke detector usage has continued to increase in the U.S. since 1975.
The most significant increase of 10% to 74% occurred from 1975 to 1984 (Hall,
1994). Since then, the usage has continued to increase to approximately 92% in
1993. This increase in usage is observed in Figure 1.1 (Hall, 1994).

The National Smoke Detector Project, a multi-phase national survey
conducted by the U.S. Consumer Product Safety Commission (CPSC) has

indicated that 32% of home smoke detectors, failed to operate in the event of a



Figure 1.1
Growth in Home Smoke Detector Usage
1970-1993 (Hall)

100
r 86 e
- 81_)-—"/;3/
r e
- 74 _, ., 82
- 76

30.9

8 8 8 8 &8 3 8 8

Home fires with smoke detectors
- 17.6

-
o
T

PO S S W S S S S T S SO SHU ST
\977 1972 10791080 1081 1982 1983 19841085 198087 1988 1987 \6¥0109Y 1902 1303
Year

Sources for homes with smoke detscsors: 1977, 1980. 1982 esnmotes from somple surveys by the U.S. Fire Administronon: 19831993
estimomws from Louis Homns surveys for Preventon Magazne.

o




fire. However, the overall use of smoke detectors has been significant in saving
lives.

“Smoke detectors are very effective in saving lives. The death

rate in fires where they have been present and operated was nearly

half the rate in fires where they were present but did not operate

(CPSC, 1995).”

The performance of smoke detectors in home fires is presented in Table 1.1
(CPSC, 1995). Additionally, Hall (1994) listed results of several studies
indicating the percentage of home smoke detectors that are operational, see
Table 1.2.

In a 1983 study by Hawkins, 92% of the nonoperational smoke detectors
could be attributed to the lack of knowledge, neglect or misapplication by the end
user of these devices. The most significant finding was that 69 % of the failures
could be attributed to power source related problems. See Table 1.3 for a listing
of the results found in that study (Hall, 1994). The National Smoke Detector
Project (CPSC,1995) found that the classification of nonoperational detectors
(detectors with power source failures) could be subdivided further. The study
consisted of 273 cases that involved detectors that failed to activate
(CPSC,1995). In this study, 59 % of the failures could be attributed to power
source related problems. See Table 1.4 for the results of this study

(CPSC,1995).



Table 1.1
Detector Performance in Home Fires
Average Annual Estimates, 1989-1991(CPC)

3) Detector Presence, Excludes Incidents Where Detector Presence Was Not Required

Fires Deaths Injuries
Presence Estimated Perceat Estimated Percent _ Estimated Percent
Total 321,400 100 2,590 100 15,200 100
No Detector 152,700 48 1,550 60 6,700 4
Detector Present 168,700 52 1,040 40 8,500 56

b) Detector Operation, Excludes Incideats Where It was Likely that Smoke Did Not Reach the Detector®

Fires ' Deaths Injuries
Operation Estimated Percent Estimated Percent Estimated Percent
Total 83,400 100 880 100 6,500 100
Operated §7,100 68 430 55 4200 &5
Did Not Operate 26,300 32 400 45 2,300 35

If the detector was in the room of origin, only incidents with smoke damage beyond part of the room were included.
If the detector was outside the room of otigin, only incidents with smoke damage beyond the room the origin were
included.

Source:  Estimates were derived by applying proportions observed in the U.S. Fire Administration's National Fire
Incident Reporting System (NFIRS), to aggregate national estimates from annual surveys conducted by
the National Fire Protection Association (NFPA).



Table 1.2
Percentage of Home Smoke Detectors
That Are Operational (Hall)

Results of Several Studies

1. Twelve communities* 92%
(principally Montgomery County, Maryland), 1978-1979

2. Santa Barbara, California, 1983** 64%

3. Oregon, 1984+ 75%

4. DeKalb County, Georgia, 1985** 70%

5. Inference from two national studies**** 83%

6. Unreported fires study (fires with smoke spread beyond 68%
room of origin)*=*=*

7. National Smoke Detector Project Survey *==== 80%

* Raymond E. Hawkins. An Evaluation of Residential Smoke Detectors Under Field Conditions: Final
Phase, Washingron. D.C.: international Association of Fire Chiefs Foundation, March 1983, p. xdii.

** Leon Cooper. “Why We Need to Test Smoke Detectors,” Fire Journal, November 1986, pp. 43465.

*** Centers for Disease Control. U.S. Department of Heaith and Human Services, Morbidity and Mortal-
ity Weekly Report, July 18, 1986.

**** “The Prevention Index ‘87.” Prevention Magazine. 33 East Minor Street, Emmaus, Pennsylvania
18098. 1987, and R.E. Hoffman, “Tracking 1990 Objectives for Injury Prevention With 1985 NHIS Find-
ings,” Public Health Report #101, November-December 1986, pp. 581-586. The former estimated 76% of
homes had at least one detector in 1985, and the latter estimated 63.3% of homes had at least one func-
doning detector in 1985, which would mean an 83% rate of operationality.

o= Audits & Surveys, Inc.. 1984 National Simple Survey of Unfeporwd Residential Fires, Final Tech-
nical Report, Contract C-83-1239, for the U.S. Consumer Product Safety Commission, June 13, 1985.

*#wess Charles L. Smith, Smoke Detector Operability Survey-Report on Findings, Bethesda, Md.: U.S.
Consumer Product Safety Commission, November 1993, p.ii




Table 1.3
Causes of Smoke Detector Failures (Hawkins)

-

69% | Dead or battery, disconnected AC power
supply, disconnected smoke detector, etc.¥

12% Incorrect installation of detector *
11% Incorrect location of detector *
8% Other (unidentified)

100% Total

*Note: 92 % of the failures can be attributed to
lack of knowledge, neglect and misapplication

Results are based on Hawkins study in 1983 (Hall, 1994)



Table 1.4
Causes of Smoke Detector Failures (CPSC)

Condition No. Percent of Detectors

Power Disconnected 162 59
Missing Battery 102 37
Disconnected Battery 41 is
Disconnected AC 19 7

Other 180

Heat Deformed 4] 15
Missing Cover 36 13
Clogged with dust/dirt 23 3
Insect Infestation 14 s
Failure of AC Power Supply 6 2
Located in dead air space s 2
Other ss 20

Note: It was possible to specify multiple conditions for & detector. Therefore, number of conditions is greater than
273 and the percent of detectors adds to more than 100. The conditions cited under *Power Disconnected®
do not overiap each other, but could overiap conditions in the "Other” section.

Source:  U.S. Consumer Product Safety Commissioo/EPHA
Data from 1S fire departments



The National Smoke Detector Project (CPSC,1995) also indicated that
the leading reason for the nonoperational smoke detectors was directly related to
nuisance alarms. This was consistent with the reportings of Denny (1993) in his
review. The main causes of nuisance alarms were cooking fumes and continuous
response when powered. The next largest group consisted of alarms with
unspecified reasons and the third group cited was reaction to humidity and steam.
The results of the study indicated that nuisance alarms could be reduced by
decreasing the sensitivity of detectors, however, it was cautioned because this
would reduce the ability for the detectors to adequately respond to fire conditions
(CPSC,1995) (Hall, 1994).

This project involves the improvement of detector technologies in an
effort to decrease the nuisance alarm problems currently existing with residential
smoke detectors, without sacrificing the ability of the detectors to respond to fire
conditions. This will be done by combining the current technology of gas sensors
and an artificial intelligence technique to reduce detection times and improve the
ability of residential smoke detectors in distinguishing between fire and non-fire
signatures. Currently, the ionization and photocell detectors used in the
residential setting can only accomplish one of these objectives, at an acceptable

level, at a single time. False alarms can be reduced by decreasing the sensitivity



of the detector, however, this usually results in longer response times for the
detector. Conversely, by increasing the sensitivity the response times will be

shorter, but this usually results in an increase in nuisance alarms.

1.2 Project Motivation

The goal of this project is to develop a detector that has short response
times, the ability to detect a wide variety of fire scenarios and the capability of
discriminating between fire and non-fire sources. As the third and final stage of a
multi-year project to investigate the feasibility of combining gas sensors with a
neural network, an evaluation will need to be made.

The first phase consisted of a series of small scale experiments conducted
by Denny (1993) in a modified U.L. 217 smoke box (U.L. 217, 1985). The
success of this testing led to a series of large scale experiments in phase 2
conducted by Hagen (1994). The success of this phase and the limited scope of
previous research involving large scale testing of gas sensors for use as fire
detectors has led to this phase of the project.

There have been indications that tin dioxide gas sensors may be
inadequate for use as smoke or fire detectors. The use of a single gas sensor as a
smoke or fire detector has resulted in both high levels of false alarms and/or lack

of detection. However, the combined use with other sensors has been



demonstrated to yield better detection (Bukowski and Bright, 1975) (Hagen,
1994) . Algorithms like principle component analysis (PCA), expert system
analysis and fuzzy logic can be used to detect changes in multiple variables,
however, there is a problem in the classification of such changes. Further
investigation of the combined effects may result in a method of classification that
would yield more accurate detection. Milke (1995) suggests that additional
experiments are required to determine if there is a potential for flaming and
smoldering sources to be masked by a nuisance source.

The purpose of this phase of the research project is to continue the large
scale testing, in an effort to further understand the behavior of gas sensors and to
evaluate the potential use of these gas sensors as detectors in the residential
setting. This study will evaluate the ability of these sensors to differentiate

between a nuisance source and a fire source for multiple source scenarios.

1.3 Scope and Objectives

The scope of this paper is to evaluate the use of gas sensors for
applications with the Principle Component Analysis (PCA) for the detection of
fires. This study will identify fire signatures and compartment fire dynamics that

are relevant to the development of a protocol fire detector. A review of previous

10



research will be conducted to establish what is already known about the use of
gas sensors for fire detection. The potential use will then be evaluated.

The results of these experiments will be used to evaluate the potential use
of gas sensors as part of a prototype fire detector, based on the ability of the
detector to identify a fire signature in a masked environment and the ability of the
detector to reclassify an event. The issues of spacing and coverage area have not
yet been addressed. This in an area that will need to be evaluated as part of
future research projects. These issues can not be addressed at this time, since the
size of the test room is not large enough to make a comprehensive evaluation.

The overall objective of this paper is to study signatures of combined
sources. In addition, signatures best suited for use with PCA are identified. The
lack of testing with similar scenarios presents a challenging problem in evaluating

the results of these tests with combined sources.

11



CHAPTER II - DETECTION PRINCIPLES

2.1 Compartment Fires

In order to correctly describe the principles associated with detection, it is
important to understand fire behavior within a compartment. A fire will affect its
surrounding environment in several ways; it will add energy both in the forms of
heat and electromagnetic radiation, it will induce flows within the compartment,
it will produce a variety of gases and will consume oxygen. Additionally, the
characteristics of the compartment will affect the extent of these changes in the
environmental conditions. The ventilation of the compartment will affect the
combustion process associated with the fire and the movement of smoke. The
characteristics of the boundaries of the compartment will affect both the fire
induced flows and the net energy increase to the environment.

The behavior of a fire within a compartment has been extensively studied,
providing a variety of information. There have been ways of describing the entire
process or phenomenon from very simplistic models describing the global effects,
to extremely complex models taking into account a wide variety of variables such
as mixing correlations and turbulence.

Drysdale (1985) described compartment fires in three stages , the growth

or pre-flashover stage, the fully developed or post-flashover stage and the decay

12



stage. In this description the temperature signature is used to describe the
phenomenon. Figure 2.1 shows the stages of a compartment fire as a function of
the average gas temperature described by Drysdale (1985). The growth stage is
described as the initial period of a fire, with low average temperatures and
localized burning in the area of the fire origin, leading to the onset of flashover.
The fully-developed stage is described as the post flashover period involving
most or all combustibles in the enclosure, resulting in peak heat release rate and

| temperature for the fire. The decay stage is described as the period after the
temperature has fallen to 80 % of its peak value.

Milke and Mowrer (1993) have described a compartment (enclosure) fire
in four stages, the plume and ceiling jet stage, the unventilated filling stage, the
pre-flashover vented stage and the post-flashover vented stage. See Fig 2.2 for
the four stages described. In this description, the most significant variables for
the compartment fire are; heat release rate, enclosure construction, enclosure
ventilation rate and enclosure size.

Milke and Mowrer (1993) compiled a comprehensive review of the
effects of air entrainment in fire plumes. Most of the entrainment models

discussed are based on the weak point source plume theory developed by

13



Temperature

Figure 2.1
The Stages of a Compartment Fire
Represented by the Average Gas Temperature
As a Function of Time (Drysdale)
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Figure 2.2
The Four Stages of Compartment Fires
(Milke and Mowrer)
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Morton, Taylor and Turner (1956) for axisymmetric fire plumes. This model
assumes that all of the energy is released at a point and that density variations
between the plume and ambient fluid are small. The model also assumes that the
plume is located in the open with minimal aerodynamic disturbances caused by
wind or mechanical ventilation effects. This theory is known as a far field model
and is valid for regions located away from the combustion zone. For the
purposes of this paper the model developed by Heskestad (1995) shall be
utilized.

For enclosure fires, there may be a second region of interest established
as a result of the boundary imposed by a ceiling preventing the plume from rising
to its maximum height based the effects of buoyancy. This region is known as
the ceiling jet region which is observed as the radial flow along the ceiling,
resulting from the excess buoyant effect in the smoke above the plume. From a
detection standpoint, this is the region of concern, since it is essential in the
recognition of a fire signature in the incipient or early stages of fire development.
There is a transport time lag associated with the ignition of a fuel and the time at
which the smoke reaches a detector with a sufficient change in some signature
quantity to cause an alarm (Milke and Mowrer, 1993).

For the purposes of this paper, the model prepared by Alpert (1971) and

the modified equations of Evans (1995) shall be used. This theory is in
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agreement with the point source theory to be used for calculations of the plume
region. All variables will be represented as a function of the radial distance from
the center-line of the plume.

“These empirically determined relations for gas temperature and

similar types of relations for gas velocity are in good agreement

with the previous theoretical analysis for a “small” fire” (Alpert,

1972).

The filling stage, described by Cooper (1995) is next in the chain of
events, which begins when the ceiling jet extends radiaily to the extent of the
walls of the enclosure. There may be a transitional effect at the wall and ceiling
interface, known as the wall jet, which results from substantial velocities
remaining in the ceiling jet at the interface.

The momentum effects driving the wall jet downward are countered by
the effects of buoyancy remaining in the hot wall jet layer and there is a point
where the wall jet is halted and the effects of buoyancy drive the smoke back up.
There are additional frictional and heat loss effects which will decrease the time
for this transition resulting from momentum losses. There is some mixing that
occurs at this transition, however, the result is the formation of a quiescent hot

gas layer beneath the ceiling jet. Eventually this layer becomes uniform in

thickness and fills at a steady rate. The formation of the upper gas layer is
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usually treated as a homogeneous mixture of uniform temperature and gas
concentrations (Cooper, 1995).

The filling stage in compartments with insignificant ventilation will
continue until the smoke layer descends to the floor or there is an insufficient
quantity of oxygen or fuel to allow burning to continue. For enclosures with
openings and/or mechanical ventilation, the filling period will continue until a
quasi-steady mass flow is created for the mass flow into and out of the enclosure
(Milke and Mowrer, 1993). The preflashover vented period begins at the onset
of this flow. There is a potential for mixing at the interface of the ventilation
openings, which would effect the temperature and composition of the smoke
layer (Milke and Mowrer, 1993).

The postflashover vented period is the final stage for compartment fires
and is the most hazardous. This period begins when there is sufficient oxygen
available to allow all or most combustibles within the compartment to ignite.
This provides the peak heat release rate for the burning, although it is limited by

the ventilation flow rate into the compartment (Milke and Mowrer, 1993).
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2.2 Fire Signatures

To effectively detect a fire it is important to understand that fires can be
recognized on the basis of common trends or patterns that occur among similar
fire scenarios.

“From the moment of its initiation, fire produces a variety of

changes in the surrounding environment. Any of these changes in

the ambient conditions is referred to as a “fire signature” and can

be monitored by a detection system. The production of smoke,

for example, will result in a decrease in visibility that can be

detected. To be useful, however, a fire signature should generate

a measurable change in some ambient condition and magnitude of

that change (the “signal”) must be greater than the normal

background variations (the “noise”) for the condition.” (Bukowski

and O’Laughlin, 1994)

In essence, two fires of the same size and fuel, in the same mode of
burning and with similar environmental conditions, should produce similar
quantities of energy and combustion products and consume similar quantities of

oxygen. The fire signatures of concern include aerosol concentration, species

production, oxygen consumption and energy increase.

2.2.1 Aerosol (Smoke) Signatures

The term aerosol is used to define the liquid and solid particles found in

smoke from fire generated sources. It was determined that materials burning in
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the flaming mode tend to produce a large number of small particulates, while, the
smoldering mode of combustion tends to produce fewer particles that are
typically larger in size (Lee and Mulholland, 1977). Additionally, particulates can
be classified as visible or invisible, with visible particles typically ranging in size
from 4 to 5 microns (Bryan, 1993). Visible particulates are uSual]y unconsumed
carbon and carbon-rich compounds. Invisible particles may consist of various
gases and ions, that may be seen as a light haze, when a significant quantity is

present (Bryan,1993).

“The process of combustion releases very large numbers of solid

and liquid particles into the atmosphere. The size of the particles

ranges from S x 10 micrometers to 10 micrometers. These

particles suspended in air are called aerosols and when produced

by fire, usually called smoke.” (Bukowski and O’Laughlin, 1994)

The particle size, quantity of particles and size distribution affect the
ability for detection. Lee and Mulholland (1977) specified that the most
significant variable is the size distribution of aerosol particles. Smoke does not
consist of uniformly sized particles, but rather a range of particles from 0.005 to
5 um, with a peak concentration at a specific size. Bukowski and O’Laughlin
(1994) suggest that condensation nuclei (cloud chamber) type detection should

be used to detect invisible aerosol signatures and the ion chamber and

photoelectric types should be used for larger aerosol signatures.

20



The size distribution of particles changes as the smoke ages. The
particles increase in size as a result of coagulation due to Brownian collisions.
The effect is observed as a reduction in the number of particles. The volumes of
the particles remains constant, however, indicating an increase in particle
diameters. The rate of coagulation was observed to increase at higher
concentrations, in agreement with coagulation theory (Lee and Mulholland,
1977).

A recent study conducted by Aggarwal and Motevalli (1995) investigated
smoke properties for non-flaming fuels. Nine fuels were tested in a 2.4 m x 1.8
m x 1.8 m high enclosure for the smoke properties used for ionization and
photoelectric detection principles. The fuels tested consisted of seven
conventional fuels; wood (douglas fir and particle board), paper, nylon, wool,
polyurethane, PMMA and two non-conventional fuels, cooking oil and bread.
Smoke properties that were measured were the following; scattered light
intensity, response of Measuring Ionization Chamber (MIC), obscuration, smoke
particle density and fuel mass loss. The fuels were ranked by both ionization
(MIC) and light scattering (Mie) reference detector responses. There was
consistency in the ranking of the materials, although, the ranking was in the
reverse order for the two methods used. It was determined that the classification

of fuels based on a simplified Mie theory, a model used to calculate the intensity
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of light scattered by smoke particles, was fuel dependent and may not be practical
without more precise measurement techniques. Coagulation was identified as
contributing to variations in particle diameter, which was an assumption needed
for this analysis. Aggarwal and Motevalli (1995) found that the cellulosic

materials have higher smoke generation per unit mass than the synthetic materials

tested.

2.2.2 Energy Signatures

A fire can be defined as an oxidation-reduction reaction accompanied By
heat and light. The energy introduced to the environment in all stages of a fire is
observed through the release of radiative and convective energy. The radiative
energy fraction can be approximately 25 to 40 % of the total energy output of the
fire, where the total energy is considered to be the sum of the radiative and

convective fractions. (Milke and Mowrer, 1993)

2.2.2.1 Radiant Energy Signature

The radiative energy signatures produced by a fire, typically the infrared
(IR) and the ultraviolet (UV) signatures, are the earliest energy signatures to
detect. The IR noise levels produced by solar and man-made sources can create

a challenging design problem. Yet, the IR detector can be used to detect both
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the carbon dioxide (CO,) - water vapor (H,0) and flicker signatures with an
excellent signal-to-noise ratio. The UV signatures are observed as emissions and
often have signal-to-noise ratios which are less than IR signatures. (Bukowski

and O’Laughlin, 1994)

2.2.2.2 Convectiv.: (Thermal) Energy Signature

The convective energy, 60 to 75% of the total, is primarily responsible for
the temperature increase in the environmental surroundings and the movement of
smoke. In compartment fires, 60 to 90% of the energy is lost to the surrounding
environment as a result of the conduction of heat through the compartment
boundaries.

“Heskestad (1991) has suggested that for relatively small fires in

large spaces the heat loss factor is less than in small spaces

because the temperature difference driving the heat loss is smaller

in large spaces. For very large spaces, Heskestad suggests a

reasonably conservative value for the heat loss factor would be (1-

%r), where yg is the radiative fraction” (Milke and Mowrer,

1993).

Additionally, the smoke layer becomes diluted by the entrainment of air in
the plume and ceiling jet regions resulting in a decrease in temperature in the

smoke layer. For detection purposes, thermal signature can be utilized on an

absolute value or a rate basis. The time required to cause a sufficient
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temperature increase for detection can range from less than a minute to several
hours based on the scenario of the fire (Bukowski and O’Laughlin, 1994). This
signature is most effective for fires with fast growth rates, providing a large initial
energy increase. Typically, detection based on the use of the thermal signature is

slower than detection by other signatures.

2.2 3 Gas (Species) Signatures

Fires produce many species which are not normally present in high
concentrations during ambient environmental conditions. Most organic fires
produce carbon dioxide (CO;) and water vapor (H,0) under ideal conditions.
Usually, conditions are not ideal and many other species are produced as a result,
for example, carbon monoxide (CO) and solid carbon (C) particulates are
produced in oxygen (O2) limited reactions. For some materials, there are
additional reactions that occur, resulting in the production of species such as:
hydrogen chloride (HCI), ammonia (NH;), hydrogen fluoride (HF), hydrogen
cyanide (HCN), nitrogen oxides (NO,), acids, etc.

A study conducted by Jackson and Robins (1993) investigated the
potential use of carbon monoxide, hydrogen, humidity and oxygen signatures for
use in detecting fires. In their findings it was determined that carbon monoxide

was the best suited candidate for use, since it exists in ambient conditions in low
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concentrations and any increase would be significant. However, Jackson and
Robins (1993) recommended that careful judgment be used in determining the
alarm threshold limits, since there are many nuisance sources that could cause
false alarms. Jackson and Robins (1993) suggest that a 20 ppm alarm level
would have led to the detection of five of the six large scale fire tests that were
conducted.

Gottuk et al (1992) investigated the relationship of species yields and the
equivalence ratio for compartment fires. A series of tests were conducted using
hexane, polymethylmethacrylate (PMMA), spruce and polyurethane. The
measurements consisted of carbon monoxide, carbon dioxide and oxygen
concentrations, temperature, fuel volatilization rate and air entrainment rate. The
production of carbon monoxide was reported as having a strong dependence on
the compartment flow dynamics and upper layer temperature and a less sensitive
dependence on fuel type. The generation of carbon dioxide and consumption of
oxygen were reported as having a dependence on the equivalence ratio,
temperature and fuel type.

The combustion of most organic compounds results in the production of
carbon monoxide and carbon dioxide. The generation rates of these compounds
vary as a function of the chemical bonds of the material, the ventilation rate and

the mode of combustion (Tewarson, 1995). Several trends were noted on the
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dependence of the ventilation rate, the generation of carbon dioxide and the
depletion of oxygen increase with an increase in the ventilation rate, while
conversely, the generation of carbon monoxide will decrease with an increase in
the ventilation rate. Tewarson has studied the yield fraction for a variety of fuels
in both the flaming and non-flaming modes. The ratio of carbon monoxide and
carbon dioxide concentrations can thus be used as an indicator of the combustion
mode. See Figure 2.3, for a plot of the carbon monoxide and carbon dioxide
yields presented by Tewarson (1995).

Tsuchiya (1994) has conducted experiments on CO/CO; ratios via the
use of the cone calorimeter. The concentrations of these gases were measured
under normal ventilation conditions for the cone calorimeter. It was noted that
the CO/CO; ratio was nearly constant for the complete combustion of each fuel
tested. The tests were conducted for a variety of materials in the three stages of
combustion, oxidative pyrolysis, flaming (and non-flaming) and glowing. The
generation of carbon monoxide and the CO/CO, ratios were noted as being the
highest among the tests in the oxidative pyrolysis mode, followed by the glowing
tests. For the combustion of flaming liquids and non-charforming plastics, the
CO/CO; values ranged from 0.0002 to 0.056. The three modes of combustion of
wood had representative values of 0.90 for pyrolysis, 0.25 for glowing and

0.0035 for flaming. The CO/CO; ratios for the oxidative pyrolysis
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Figure 2.3
CO and CO; Yield Data (Tewarson)
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of polymers were reported in the range of .09 to 0.9. The combustion of
charforming polymers had CO/CO; ratios ranging from 0.01 to 0.37 in the
flaming mode and 0.11 to 2.2 in the glowing mode. Tsuchiya (1994) has also
reported CO/CO, ratios for a number of other researchers, both for small-scale
and large-scale experiments, these results are presented in Tables 2.1 and 2.2,
respectively.

Roby and Beyler (1990) indicated that although fire dynamics has been
studied for decades, little has been done in the areas of combustion efficiency and
toxic gas production rates. The scope of that study included species generation
rates, major toxic and smoke generation rates and the effects of external flames in
destroying toxic gases for oxygen limited fires. The study indicated that oxygen
depletion and temperature effects are dominant over carbon monoxide
production in open (flaming) combustion.

In the early stages of fire development, the depletion of oxygen is usually
considered to be important in the immediate fire area. The mode of burning and
the generation rates of other species are dependent on the oxygen consumption
rate of a fire as identified by Gottuk et al (1992) and Tewarson (1995). For later
times in the fire development, the depletion of oxygen may been observed as a

global effect throughout the compartment. For ventilated spaces the oxygen

28



Table 2.1

CO/CO2 in Small-Scale Tests (Tsuchiya)

Apparatus Fuel Mode Co/C0, Reference

NIBS Test 6 materials Flaming 0.047+0.017 Hirschler(9]

NBS Cup Douglas fir Flaming 0.092 Purser(10}

DIN Tube Fibres Flaming and 0.17 - 0.6 Kallonen{ll]
non-£flaming

DIN Tube Wood Flaming and 0.01 - 0.6 Prager[l2]
non-flaming

Heated tube PU Pyrolysis 2.8, 18 Woolley & Wadley[13]

HRR apparatus Various Combustion 0.004-0.11 Tewarson(l4]

Cone calorimeter Various Combustion 0.007- 0.05 Paul[l5]

OSU apparatus Plywood Flaming and 0.01 - 0.53 Tsuchiya,Mathieu(16]
non-flaming

UPITT 4 materials Combustion 0.05 - 0.4 Grand[17]

Small chamber 4 liquids Combustion 0.05 - 0.5 Morikawails]

Small chamber Methanol Combustion 0.09 - 0.9 Kim et al(1l9]

Fluidized bed Peat pyrolysis 0.2 - 4 Arpiainen,Lappi[20]
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Table 2.2
CO/CO2 in Large-Scale Tests (Tsuchiya)

rire Type Fuel CO/CO, 0,% Reference

18 room fires Fibreboard cribs 0.37+0.19 Gross,Robertson(21]

37 room fires Wood cribs 0.35+0.18 Tewarson{22]

16 room fires Cribs. panels etc.0.03-0.63 19.5-3 Budnick([23]

Low-vent. fire Wood 0.36 3.6 Woolley & Fardel[7)

A room fire Wood 0.13 0.01 Portier et al(6]

A room fire Wood, low & high 0.33, 0.07 4, 9 Purser{10}
ventilation

A room fire PU 0.07 5.8 Alpert et alf24]

1/2 scale house Fuel oil 0.01-0.037 14-12 Kaya & Itaya[2S)

Dormitory room Furniture 0.05 9-6 Kim([26]

Two bldg.fires Furniture 0.33, 0.53 3.1, 2.8 Morikawa et al[27)
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concentration within the space may eventually reach a steady state condition
where there is a strong dependence on the ventilation capacity of the space. For
unventilated spaces, however, the only available oxygen is that which is initially
present within the space and that which enters through leaky construction,
indicating that the depletion of oxygen can become important throughout a
compartment.

Oxygen is consumed in the combustion zone, resulting in the formation of
oxidized compounds. Inefficiencies in burning, result in oxidizable compounds
and unburned fuel remaining the smoke. The use of tin dioxide gas sensors has
demonstrated the ability to monitor increases in such compounds. The operating
principles of these devices are discussed in detail by IThokura and Watson (1994),
Bright and Bukowski (1975), Mandelis and Christofides (1993), and Denny
(1993). The oxygen signature can also be used as an indicator of the rate of

combustion, which is a key feature in oxygen calorimetry.

2.3 Previous Research Involving Tin Dioxide Gas Sensors

The idea of using Taguchi (TGS, tin dioxide) gas sensors for detecting
fires is not a new one, but recent studies demonstrated that there may be some
potential for their use. Bukowski and Bright (1975) indicated that the use of

TGS sensors as fire detectors provided little merit. The study involved 26 test
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fires including shredded paper, wood cribs, gasoline, polystyrene, polyurethane
and cotton. See Table 2.3 for the description of these tests. All of the fires were
in the flaming mode except for the cotton which was in the smoldering mode.

The test fires were conducted at NIST (formerly NBS) in a large room
about 55,000 cubic feet (1,557 cubic meters) in volume. Ten smoke detectors
were installed in the space approximately 21 feet from the center of the fire. The
TGS sensor detected 1 of 26 fires and indicated a trouble signal for 1 of 26 fires.
This response was poor in comparison to the photoelectric and ionization
detectors also used in the tests. See Table 2.4 for the performance of these
detectors. Bukowski et al (1975) also expressed concerns of long-term stability
and false alarm problems and a lack of confidence in the use of these gas sensors
in detecting fires.

In a small scale study conducted by Okayama (1991) two tin dioxide
(Sn0,) sensors of differing tin dioxide layer thickness were evaluated for use with
a neural network. The tests were performed by introducing various smoldering
and nuisance source odors into a 1.8 liter glass jar containing the two sensors.
The sensor output for the two sensors were plotted against one another for the
18 tests conducted, see Figure 2.4 (Okayama, 1991). The majority of the tests

demonstrated trends capable of distinguishing between the smoldering
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Table 2.3
Test Descriptions
(Bukowski and Bright)

Test Nos. Types of Test Fires
1,2,3.10 Eight ounces (gSOg) of shredded paper in harduare
cloth basket. Match ignited in bottom center.
4,5 Class A wood brand ignited by 100 ec of ethyl alcohol.
] 100 cc of motor gasoline, macch ignition.
7 200 ec of motor gasoline, match ignitiom.
8,9,27 Two ounces (57g) of polystyrene packing marerial,
ignited by S0 cc of ethyl alecchol.
11,12 Two Class A wood brands ignited by 100 cc of ethyl
-alcohol.
13,14,21 Two Class A wood brands ignited by 25 cc of ethyl
alcohol.
15 Class A wood brand on 1000-watt hot plate.
Immediate ignition, flaming fire.
16 Two 12"x12"x3" (30x30x8cm) pieces of flexible
polyurethane foam ignited by 10 cc of ethyl alcohol.
17 Three 12"x12"x3" (30x30x8cm) pieces of flexible
polyurechane fosmm ignited by 10 cc of ethyl alecohol.
19,24 Three 12"x12"x3" (30x30x8cm) pieces of flexible
polyurethane fosm ignited by 10 cc of ethyl alcohol.
20 Rav cotton, 2 pounds: (900g), in pan on 1000-watt
hot plate.
22,23 One Class A wood brand ignited by 10 cc of ethyl
alcohol.
25,26 One 12"x12"x3" (30x30xBem) piece of flexible poly-
urethane foam ignited by 10 ec of ethyl alcohol.
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Table 2.4

Test Results
(Bukowski and Bright)
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Figure 2.4
Tin Dioxide Sensor QOutput Traces

(Okayama)
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odors and the organic compound odors. The sensors were also compared by
ranging the heater voltages. Two distinct trends were noted, a decrease in heater
voltage increases the sensitivity of the sensor in detecting smoldering odors and
decreases the sensitivity to organic compound odors. Okayama (1991)
concluded that there may be some potential for the use of tin dioxide gas sensors
as fire detectors.

The ability to detect slow burning fires was studied by Kohl et al. (1995)
using a three metal oxide gas sensor array. The sensors were designed for the
detection of carbon monoxide, hydrogen (H,) and nitrogen oxides (NOy) gases.
for the detection of smoldering lignite fires. The signals for the detectors were
used to develop eight conditions which would discriminate between smoldering
fires and nuisance sources. The system was capable of detecting low quantities
of gases, representative of very small or smoldering fires, however, the detection
times were on the order of hours.

A study conducted by Denny (1993) at The University of Maryland
addressed the possibility of using tin dioxide gas sensors in an algorithm, the
expert system, capable of distinguishing between fire and non-fire sources. The
study consisted of 31 small scale tests in a modified U.L. 217 smoke box (U.L.,
1985). The test sources consisted of flaming and boiling liquids, flaming and

pyrolysing solids and nuisance odors. See Table 2.5 for the list of candidate
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Table 2.5
Candidate Test Sources (Denny)

Boiling Flaming | Pyrolyzing | Flaming Environmental
Liquids Liquids Solids Solids Sources
Heptane Newsprint Nail Polish
Remover
w Kerosene Cheesecloth Furniture
Polish
Paint Thinner Polystyrene Hairspray "
70% Isopropyl Hot Dogs Boiling Water
Alcohol (Humidity)
Vegetable Toast Ammonia Based
0il Window Cleaner
Cooking Spray "
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sources used for these tests. The expert system developed used the maximum
output values for carbon monoxide, carbon dioxide and Taguchi (Figaro TGS
822) sensors. The system is shown in Figure 2.5 (Denny, 1993). The system
classifies flaming fires based on the carbon dioxide concentration and
differentiates between smoldering and nuisance sources based on threshold values
for both the TGS 822 sensor output and carbon monoxide concentration. The
performance of the expert system was such that all of the flaming fires and
nuisance sources were correctly classified and 60% of the non-flaming fires were
correctly classified. The main drawback in the concept of this system is that the
high threshold limits established may result in high detection times. While
somewhat crude, this algorithm demonstrated the ability of tin dioxide gas
sensors to be used for the discrimination between fire and non-fire sources. The
results of this project were significant enough to warrant a second phase of the
project.

The study was continued by Hagen (1994) in a test facility at The
Maryland Fire and Rescue Institute at The University of Maryland. A series of
large scale tests were conducted to determine the feasibility of using gas sensors
to detect fires. A 3.6 x 3.6 x 2.44 ft room was used for the conduction of the 87
tests. The test sources consisted of flaming and boiling liquids, flaming and

pyrolysing solids, flaming gas and nuisance odors. See Table 2.6 for a complete
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Figure 2.5

Expert System -
Fire Data Classification Rules (Denny)
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Table 2.6

Test Sources (Hagen)

Flaming | Boiling Flaming Pyrolysing | Flaming | Environmental
Liquid | Liquid Solids Solids Gas Sources
Vegetable Toast Propane | Coffee
Oil
Heptane Paper Ammonia based
window cleaner
1-Propano} Paper Hair spray
Towel
Methanol Cotton Nait polish
remover
Toluene Cotton Cloth Cooking spray
Polystyrene Fumiture polish
Pine wood Lysol
Cardboard Water mist

Cheesecloth

Boiling water

Polyethyiene

Toast in toaster

Bleach

Cigarette smoke
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list of test sources. The instrumentation used for the development of an expert
system based on this series of tests consisted of carbon monoxide, carbon
dioxide, and oxygen analyzers, two Taguchi sensors and thermocouples. See
Figure 2.6 for the locations of these devices.

Hagen (1994) evaluated four combinations of threshold value systems, A
- D, which led to the development of a new expert system. Combination A was
identified as the best suited candidate for use and is shown in Table 2.7 and
graphically in Figure 2.7 (Hagen, 1994). The evaluation of all four systems are
shown in Table 2.8 (Hagen, 1994). He noted that Combination D was more
prone to false alarms than Combination A, which disqualified the selection of that
system, even though the results were 87% effective for both systems. He
demonstrated that threshold limits can be established for a set of sensors and
analyzers capable of discriminating between flaming fires, non-flaming fires and
nuisance sources.

Hagen (1994) provided the detection rate for the smoke detectors used
for comparison in the study, see Table 2.9, and concluded that the new expert

system was 11 % more effective than commercially available detectors.
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Figure 2.6
Test Room Layout and Instrumentation (Hagen)
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Table 2.7
Threshold Values for Combination A (Hagen)

Combination | Flaming | Nuisance | Smoldering
A Fire Source Fire
Tag 822 >09V > 0270 V
| __Tag 880 >0.15V
CO > 17 ppm
co, > 210 ppm > 22 ppm
Temperature | > 105 °F
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Figure 2.7
Classification for Combination A (Hagen)
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Table 2.8
Evaluation of Threshold Value Systems (Hagen)

Combination FL SM NU/AM Total Total %
A Incorrect Wrong
Flaming Fire 34 0 0 34 0 0
Smoldering Fire 0 10 6 16 6 38
Nuisance/Ambient 0 5 32 37 5 13
Total 87 11 13
Combination
B
Flaming Fire 34 0 0 34 0 0
Soldering Fire 0 13 3 16 3 19
Nuisance/Ambient 0 ‘.l 5 22 37 15 40
Total | 87 18 21
Combination
C
Flaming Fire 34 0 0 34 0 0
Smoldering Fire 0 8 8 16 8 50
Nuisance/Ambient 0 5 32 37 5 13
Total 87 13 15
Combination
D
Flaming Fire 34 0 0 34 0 0
Smoldering Fire 0 10 6 16 6 38
Nuisance/Ambient 0 5 32 37 5 13
Total 87 11 13

FL: Flaming, SM = Smoldering, NU/AM = Nuisance/Ambient
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Table 2.9
Detection Rate for Smoke Detectors (Hagen)

Smoke detectors FL SM AM Total Total %
Incorrect | Wrong

Flaming Fire 26 0 8 34 8 24

Smoldering Fire 0 8 8 16 8 50

Nuisance source 0 4 33 37 4 11

Total 87 20 23

FL: Flaming, SM = Smoldering, NU/AM = Nuisance/Ambient
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2.4 Using Multivariate Statistical Methods to Detect Fires

As part of this research project, the Departments of Fire Protection
Engineering and Chemical Engineering at the University of Maryland have been
collaborating to develop a discriminating fire detector. The key characteristics
for such a protocol detector are that it should be capable of discriminating
between fire and non-fire sources, detect a wide variety of fire scenarios and have
short response times. The research efforts in the first two phases led to the
development of a Principle Component Analysis (PCA) technique providing the
desired qualities for a protocol detector. The efforts of the fire protection
engineering team focused on identifying signatures from fire and non-fire sources.
The chemical engineering team concentrated on processing analysis techniques to
investigate sensor response patterns and the capability for discrimination
between fire and non-fire sources (McAvoy et al., 1996).

McAvoy et al. (1996) indicated that in chemical process industries the
collection of data for hundreds or thousands of variables in real time is required
for control systems. This vast number of variables required to be processed, can
be overwhelming and difficult to analyze. The development of multivariate
statistical methods have been effectively employed to assist operators in detecting

abnormal conditions. The coupling of these multivariate statistical methods with
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sensor technology looks promising for detecting fires more accurately than the
current technology available at this time (McAvoy et al., 1996).

As part of the first two phases, the development of the expert system
described in section 2.3, was employed as a preliminary analysis to the PCA
method. This system correctly classified all 34 flaming fires, however, it mis-
classified 12 of 53 non-flaming and nuisance sources. This suggests that further
discrimination is required for the correct classification of these events. Also, the
discrimination between these sources is inherently difficult. For example, when is
burning toast classified as a nuisance source and when is it classified as a
smoldering source?

The application of the PCA makes use of a set of experimental
measurements arranged in a data matrix, X (McAvoy et al., 1996). The rows of
the matrix, X, are the sets of data measurements for all m of the x; variables
recorded at each time step throughout the experiment. Where, m is the total
number of steps and x;is the number of sensor outputs recorded. The number of
rows in X is equal to the total number of time steps taken throughout the
experiment. PCA finds linear combinations of the raw measurements to describe
variations in the raw data. The linear combinations are referred to as scores, t;.
The number of scores used is typically much smaller than the number of

measurements taken. The scores are used to detect abnormal variations and can
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be used to reconstruct the raw sensor measurements. The difference between the
raw sensor values and the reconstructed values is termed the squared prediction
error (SPE). The SPE is also used for the determination of abnormal situations.
The combination of the scores and the SPE represent all of the sensor
measurements. Sensor fusion and data compression are required to construct
both the scores and SPE.

For the analysis of the large-scale fire tests conducted in phase 2, the
PCA model was constructed using six sensor signals. The sensors consisted of
two Taguchi sensors (TGS 822 and TGS 880), carbon monoxide, carbon
dioxide, temperature and light obscuration. The data was scaled to zero mean
and unit variance for each sensor. The results of the PCA model constructed are
presented as Table 2.10 (McAvoy et al., 1996).

The SPE declares an abnormal situation if the data is beyond the 99.5 %
confidence limit of normal data. The SPE requires three successive violations to
identify abnormal situations. An examination of the scores was required to
distinguish between flaming fires, non-flaming fires and nuisance cases. See
Figure 2.8 (McAvoy et al., 1996) for the projection of scores for nuisance and
non- flaming sources. This led to the development of the following rules for the

PCA to classify sources by determining the scores associated with a signature:
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Table 2.10

Percent Variance Captured by PCA Model (McAvoy et al., 1996)

Percent Variance Captured by PCA Model

Principal o Cumulative %
Component Eigenvalue Variance Variance
1 1.8700 31.1660 31.1660
2 1.4766 24.6096 55.7756
3 1.2086 20.1427 759183
4 0.6578 10.9630 86.8813
5 0.4678 7.7963 94.6776
6 03193 53224 100.0000

50




Figure 2.8

Projection of Scores for Nuisance and non-Flaming

Experiments onto t1-t2 Plane (McAvoy et al., 1996)
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Ift; > 5, then there is a flaming fire,

if -8 <t <0 there is a non-flaming fire,

or else there is nuisance.

This scheme led to the successful classification of all 34 flaming cases, 14 of 16
non-flaming cases, but only 27 of 37 nuisance cases. See Table 2.11 for the
classifications by PCA (McAvoy et al., 1996). The results are analogous to 10
nuisance alarms and 2 undetected non-flaming fires.

The PCA system was able to reduce detection times from those attained
using conventional detectors, by an average of 45 seconds for flaming fires and
245 seconds for non-flaming fires, the results are presented in Table 2.12
(McAvoy et al.,, 1996). A comparison of detection times for conventional
detectors and PCA is presented in Appendix A (McAvoy et al., 1996). In order
to improve the performance of this technique, additional sensors are required.
The determination of the sensors should be such that there is a separation in the
scores, which allow for the distinction between non-flaming fires and nuisance
sources (McAvoy et al., 1996). Figure 2.9 represents a detector capable of
providing the required number of variables to effectively implement the use of

PCA (McAvoy et al., 1996, Cavicchi et al., 1994). This device contains a large
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Table 2.11

Classification by PCA (McAvoy et al., 1996)

Flaming | Non-flaming | Nuisance | Total
Fire Fire
Flaming 34 34
Source
Non-flaming 14 2 16
Source
Nuisance 10 27 37
Source
"Total 34 24 29 87
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Table 2.12

Time to Detection (McAvoy et al., 1996)

Flaming_ Fires

Smolderini Fires

Total 34 16
Number of fires
undetected —commercial 8 8
Number of fires
undetected—PCA 0 2
Average reduction in 45 245
detection time (s) (57%) (30%)
Range of reduction in 6-244 182-332
detection time (s) (41-94%) (2040%)
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Figure 2.9
Thin Film Gas Sensor
(McAvoy et al., 1996, Cavicchi et al., 1994)
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array of micro-machined, silicon-based sensors which can be produced to
respond to low concentrations of different gas mixtures
(Grosshandler,1995,NISTIR 5555) (Cavicchi et al., 1994) (McAvoy et al., 1996)
(Grosshandler, 1995, NISTIR 5700).

The key conclusions of this study are that prompt detection is obtainable
using the PCA approach. The classification of various sources into the following
categories is possible: flaming, non-flaming and nuisance. Variations in ambient
conditions can also be accounted for (McAvoy et al., 1996).

Continuation of this study by Chemical Engineering will be conducted for
combination source scenarios using the measurements obtained as part of this
phase of the project. The results of this analysis have not yet been developed and

will be included as part of another paper.

2.5 Artificial Intelligence Techniques for Fire Detection

In 1991 Okayama proposed the use of an artificial intelligence technique
known as back-propagation to be used with addressable sensors for use as a
neural network for fire detection. It was identified that back-propagation could
be used for pattern-matching, but, more significantly that it is capable of coping

with changes in definitions.

56



Okayama (1991) identified four features that are required for the
development of such a system. First, the neural network structure would consist
of three layers, an input layer, a hidden layer and an output layer, with the
accuracy of the system having the highest dependence on the characteristics of
the hidden layer. The neural network is the series of strings used to connect the
layers as a signal processing network. See Figure 2.10 for the structure of a
neural network. Second, signals are given to the input and output layers of the
structure to teach it. The strength of the strings between the layers adapt to the
definitions and can continue to learn based on the frequency of the inputs. Next,
it was identified that the result of introducing a variety of signals leads to the
development of a set of simple equations, thus, a neural network would not
require an algorithm. Finally, the relationship of the input and output depends on
the strength of the strings between layers.

Okayama (1991) established a primitive neural network to obtain fire
probability, fire risk and smoldering probability by using smoke, temperature and
gas sensors. He used four cases to develop the definitions required to teach the
network and provide strength in the strings between the three layers. He

indicated that if the definitions are carefully formulated that a neural network
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Figure 2.10
Preliminary Neural Network Structure (Okayama)
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system could potentially be developed that would be somewhat representative of
the human senses and has potential use in fire detection.

Okayama (1991) continued his research with neural networks by testing
two tin dioxide sensors of different thickness, subjecting them to a variety of
odors previously discussed in section 2.3. Output signals from these devices
were used to train a neural network. The results revealed that tin dioxide gas
sensors and a neural network could be used to differentiate between the odors of
smoldering fires and the odors of organic compounds. He identified that this
type of system would have the capability of quickly and effectively identifying
abnormal environmental conditions required to detect fire in its very early stages.

An evaluation of the developed neural network was then conducted using
"real sensor data" (Okayama, 1994). The neural network that was eventually
developed is presented in Figure 2.11. The input and output layers for this
structure consist of four neurons each. The fire probability was characterized
using sensor data above a fire source at a distance of 3 m from the center of the
source. The neural network was trained using the data sets which resulted in

sixteen definition patterns, presented in Table 2.13.
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Figure 2.11
Developed Neural Network Structure (Okayama)

foput Pretrcatment Neural Net for Fire Judgement Output
of Data
Norsalized Odor Seasor Level
Odor Sensor O
O————————— Pretreat- | Rate of Change Odor Sensor I 81 Fire
sent of Probability
Sensors’ | Normalized Ssoke Sensor Level IN2 B2 O O
Smoke Semsor level
O Rate of Change Smoke Sensor IN3 ):x] 19}
M B4
Input Aidden Output
Layer Layer Layer

60



Table 2.13
Sensor Data for Fire and non-Fire (Okayama)

Norsalized Rate of Change Fire Probability

Data
Conditon Odor Smoke | Odor Smoke Defined | Calucul-

Sensor | Sensor | Sensor | Sensor ated
Unsanned | 0.037 10.080 0.015  |0.009 0.000 {0.039
Unmanned 0.027 |0.080 0.006 0.012 0.000 0.035
Non-fire 0.255 |0.150 0.079 0.033 0.050 0.030
Noo-fire 0.388 | 0.184 0.122 0.0%4 0.200 0.271
Non-fire 0.167 |0.852 0.146 0.603 0.250 0.248
KNon-fire 0.183 | 0.167 0.058 0.088 0.100 0.048
Non-fire 0.538 |0.295 0.080 0.305 0.250 0.255
Hon-fire 0.744 |0.066 0.586 0.008 0.100 0.067
Non-fire 0.170 }0.100 -0.100 | 0.000 0.150 0.161
Fire Test | 0.465 |0.211 0.077 0.131 0.750 0.697
Fire Test | 0.442 |1.000 0.405 1.000 0.750 0.745
Fire Test | 0.956 |1.000 0.786 1.000 0.990 0.994
Fire Test | 0.702 |0.506 0.160 0.230 0.900 0.937
Fire Test | 0.904 |1.000 0.535 1.000 0.950 0.980
Fire Test | 0.965 | 1.000 0.898 1.000 0.850 0.937
Fire Test | 0.956 | 1.000 0.788 1.000 0.980 0.994
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The evaluation of the neural network consisted of using six experimental data
sets, four environmental data sets and two fire data sets. The environmental data
sets consisted of normal environmental data, cooking (no further explanation),
coffee aroma, and cigarette smoke. The two fire data sets were both for
smoldering beechwood chips.

The key conclusion of this evaluation was that the neural network made
fire decisions that were quite reasonable. Although, the fire decisions in
fluctuating environments were not as reliable as the decisions in stable
environments, because the sensor output was nearly the same as fire phenomena.

Ishii et al. (1994) developed a fire detection system which uses a neural
network structure, similar to the one developed by Okayama, and a delay circuit
to incorporate a concept of time. The fire detection system is represented in
Figure 2.12. The neural network was developed using output signals for three
sensors, a chromel-alumel thermocouple, a smoke density meter and a tin dioxide
gas sensor sensitive to carbon monoxide. The mathematical model used in the
system is ASET-B, which is used to calculate the heat release rate, smoke
generation rate and gas generation rate. The calculated values are normalized
and used as input for the neural network. Finally, the output of the neural

network is representative of the danger level of the fire (Ishii et al., 1994).
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Figure 2.12
Fire Detection System Using a Neural Network
with a Delay Circuit(Ishii et al.)
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The neural network was trained using a variety of fire and environmental sources.
The flaming fire sources used were: heptane, ethanol, wood, curtains and
fusumas (Japanese papered sliding doors). Additionally, smoldering wood was
used. The environmental sources were: cigarettes, grilled fish and chicken, a
kerosene heater and a gas heater.

The test room was 6.26 m in length, 10.12 m in width and 3 m high.
Three sensors were mounted on the ceiling at one meter from the center of the
room. All of the sources were tested at the center of the room.

Ishii et al. (1994) concluded that this system can be used to make highly
reliable judgments for fire and non-fire situations. The neural network structure
used with a delay circuit can reduce false alarms caused by transient variations of
output of a single sensor.

Thuillard applied a fuzzy logic algorithm with an ionization detector
(1992) and a linear optical beam detector (1996) to reduce the potential for false
alarms associated with these types of detectors. The term fuzzy logic refers to a
method of logic which is less rigid than classical logic and allows for the
combination of several signal processing algorithms. Thuillard (1992) indicated
that the term fuzzy logic may be misleading, suggesting that the results are
unpredictable, however, very often the results are more accurate than those

attained using classical logic algorithms. The structure of the fuzzy logic
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algorithm is presented in Figure 2.13. A double information method was
implemented to distinguish between environmental conditions, perturbations and
fire conditions. Thuillard (1992) concluded that the use of fuzzy logic can be
applied to a wide range of problems and can be used to prevent false alarms.

Thuillard (1996) continued his research with fuzzy logic and combined it
with neural network technology, into a single method NeuroFuzzy, which
combines the advantages of both techniques. The use of NeuroFuzzy method
requires the trainer to closely observe each step of the learning process, termed
man-machine interface. Thuillard (1996) concluded that NeuroFuzzy can be a
powerful tool in the development of reliable algorithms for smoke detectors. The
man-machine interface provides many feedback mechanisms, which allow the
user to establish a list of goals, priorities and validation criteria.

Nakanishi et al. (1996) also implemented a neuro-fuzzy technique to
develop a fuzzy intelligent fire alarm system. The system uses a combination
smoke, heat and carbon monoxide sensor and a fuzzy reasoning technique to
determine fire and non-fire conditions. The application of the neural network is
to allow the system to continually develop as more test data are introduced. The

system redefines the classification rules as often as it is trained. Nakanishi et al.
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Figure 2.13
Structure of Fuzzy Logic Algorithm (Thuillard)
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(1996) suggest that this research will result in the development of a reliable low
cost fire alarm system.

Meacham (1994) identified that the main historical reason for false
alarms, is the susceptibility of a single sensor using a threshold value to reach an
alarm level when exposed to a nuisance source. The cross-correlation method,
developed by Heskestad and Newman (1992), uses a time-averaged product of
two or more sensor signals. The use of multiple sensors reduces the signal-to-
noise problem associated with single sensor detection. The reliability of this
technique increases as the time-averaging period is increased. Meacham (1994)
suggests that the use of artificial intelligence techniques, such as neural networks,
fuzzy logic and signal cross correlation using multi-sensor arrays will eventually
result in more accurate fire detection. Additionally, Meacham (1994) suggests
that this technology can be used with fire simulation programs to evaluate fire
detectors for design purposes.

Grosshandler (1995, AUBE '95) proposed the concept of a universal fire
emulator/detector evaluator (FE/DE). The objective of the emulator is to
eliminate the unavoidable variations in full-scale tests that have been observed in
repeat runs of the same test scenario (Grosshandler,1995, NISTIR 5555).
Computational fluid dynamic (CFD) models are then recommended to insert fire

sources into a space to be protected as a guide for detector placement and to
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estimate the system performance under a set of realistic conditions
(Grosshandler, 1995, AUBE '95).

Fischer and Luck (1994) developed a vector autoregressive modeling
technique to assist in the development of detection algorithms. The model uses a
cross correlation technique of single sensors and is aided by simulation
techniques. The applicability of the model was evaluated using simulation results
for signals of a ionization chamber, an optical scattered light smoke sensor and a
temperature sensor used for fire detection measurements in the field. Fischer and
Luck (1994) have concluded that the results for detection times and the capability
for discrimination using this method are comparable to other techniques using
multi-sensor arrays.

Fischer and Muller (1995) propose a simulation technique to aid the
design of multi-sensor detection principles using previously recorded sensor data
and statistical modeling. The sensor data is compiled into a statistical data base
of representative fire and non-fire conditions. The statistical model provides the
capability of expanding recorded signal data to the desired simulation times. A
detection algorithm was constructed using a fuzzy expert system based on four
input variables, a rule base containing five rules and one output vanable.

The model was applied to both fire and non-fire scenarios. The data sets

contained measurements of an optical light scattering sensor and a temperature
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sensor. The results demonstrate that the model is capable of discriminating
between fire and non-fire conditions. The output variable is scaled within the
range of 0 to 31, where a value of 15 indicates a fire condition. The output
decision is provided at each time step accounting for variations in the output of
the two sensors and indicating that the model is capable of reclassifying an event.
Fischer and Muller (1995) suggest that the statistical modeling and computer
simulation technique can be used to study detector behavior and provide

quantitative estimates for detector parameters.
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CHAPTER III - EXPERIMENTAL APPARATUS

3.1 Design Considerations

The experiments were conducted in a room of the following dimensions,
3.6 x 3.6 x 2.44 m in height. The test room walls and ceiling were composed of
gypsum board in all areas except for the locations of the two windows and the
door. See Figure 3.1 for layout of this test room and the location of
instrumentation. The test room was located in a test building at The Maryland
Fire and Rescue Institute Training Academy at the University of Maryland,
College Park.

The test scenarios were based on the selection of phase 2 test materials,
presented in Table 2.6, that were readily available. This phase of the research
attempts to evaluate the ability of the gas sensors in detecting a fire in an
atmosphere masked by a nuisance source, and to avoid detection in an

atmosphere with multiple nuisance sources.

3.2 Instrumentation and Sensors
The selection of equipment used to perform these experiments was based
on availability and cost. A variety of instruments were used to measure carbon

monoxide, carbon dioxide and oxygen concentrations, smoke obscuration, mass
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Figure 3.1

Test Room Layout
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loss, temperature and the presence of oxidizable and volatile gases. The
instrumentation is summarized in Table 3.1.

Carbon monoxide and carbon dioxide concentrations were measured
using two Horiba PIR-2000 gas analyzers. These analyzers use the infrared
absorption principle of measurement. The sample gases are introduced into a
sample cell where infrared radiation is emitted by a light source. The presence of
the sample gas will absorb a portion of the infrared light which is received by a
detector cell. The measurement is compared to a sealed reference cell containing
nitrogen. The difference between the two cells is produced as an electrical
output proportional to the concentration of the sample gas (Horiba Manual No.
09652).

Oxygen concentration is measured by a Servomex 540A gas analyzer.
This analyzer uses the principle of paramagnetic susceptibility developed by
Faraday. The paramagnetic susceptibility of oxygen is much larger than for rﬁost
other common gases, which means that there is a stronger attraction to a
magnetic field. Most other gases are diamagnetic, which means that the gases
are repelled by a magnetic field. The analyzer consists of three main components,
the oxygen cell, a light source and two photocells. The oxygen cell contains a

magneto with a mirror mounted at its fulcrum point. The
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Table 3.1
Summary of Instrumentation

Manufacturer Model Measurement Range
Servomex 540A 0O, 0-1%
0-2.5%
0-5%
0-25%
0-100%
by volume
Horiba PIR-2000 CO, 0-5%
0-15%
0-25%
by volume
Horiba PIR-2000 CO 0-1%
0-3%
0-5%
by volume
Figaro TGS 822 Oxidizable gases Varies by gases
Engineering
Figaro TGS 880 Volatile gases Varies by gases
Engineering
Centronic OSD100-5T- Smoke obscuration 09V
BNC
Automatic Timing 6005 Weight 0-0.172.6 N
and Controls
Fyrnetics - photoelectric smoke obscuration 1.26%/ft
Life Saver sensor + 0.38%/ft
Notifier SDX-751A smoke obscuration | threshold value
photoelectic 1.5% obscuration
smoke sensor per foot
Notifier CPX-551 smoke particles threshold value
ionization sensor high sensitivity
FCI ASD-P smoke obscuration | threshold value
photoelectic 2.0% obscuration
smoke sensor per foot
FCI ASD-1I smoke particles threshold value

ionization sensor

low sensitivity
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light source projects a beam at this mirror which reflects the light td the
photocell. Oxygen is introduced into the cell, creating a magnetic attraction with
the magneto which causes a change in the angle of the light traveling to the
photocells. This results in a change in the electrical output of the photocelis
which is proportional to the concentration of oxygen (Servomex Manual
00540/001A/0).

These gases were continuously sampled from the test room via a sampling
tube located approximately 4 inches down from the ceiling. A pump
(compressor) was used to transport the sample gases from the test room to the
gas analyzers. The sample gases were passed through an ice bath, a kao-wool
filter and a drie-rite filter to cool the sample gases, remove large solid particulates
and water vapor respectively. This process is required to prevent damaging the
gas analyzers. There was a time lag of approximately 22 seconds associated with
this configuration and was taken into account in the data analysis.

The smoke obscuration was measured by using a helium-neon laser and
photocell arrangement. The laser provided a light source of approximately 0.015
W, which provided photocell readings ranging from 0 to 9.5 V, when the
photocell was covered and with the test room door open respectively. The tests
were conducted with the test room door closed providing a range of output for

the photocell of 0 to 4V. There was some noise associated with light entering
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the test room through the windows and the photocell was positioned to minimize
the effects. The photocell was calibrated using a set of neutral density filters
with optical densities ranging from 1 ft” to 4 ft”".

The calibration curve for this instrument is provided in Appendix B.
The output of this device was considered to be suspicious as a result of
interference due to the ambient light entering through the test room windows.
The following relationship has been correlated for the optiéal density from the
calibration curve:

OD = -1.75-log,,(x) + 0.85 (3.1)

The mass loss was determined by measuring the rate of change detected
by a load cell as a function of time. The load cell uses a loading platform
mounted on a precision spring and a linear variable differential transformer
(LVDT) to measure the changes. Vertical displacement of the platform is
proportional to the weight applied, following Hooke’s Law, and is measured by
the LVDT. The tare weight and zero adjust were calibrated to provide a linear
output voltage proportional to the input weight. The calibration curve for this
instrument is provided in Appendix B.

The following relationship has been correlated for the mass loss from the

calibration curve.

m=5621.6-x 15837 (3.2)
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The temperature was measured at various locations within the enclosure
to provide a horizontal and vertical profile of the space and along the center-line
of the plume. The space was provided with 24 type K thermocouples monitored

by a LabVIEW system. The LabVIEW program was configured to monitor

temperatures of 0 to 1370°C, following the polynomial equations provided by
NIST Monograph 175 (LabView Program Book, 1993). The program was
configured to measure temperatures at 4 second intervals, broviding a graphical
display of the output of all 24 thermocouples throughout the tests.

The presence of oxidizable and volatile gases were measured by using the
Taguchi 822 and Taguchi 880 stannic oxide gas sensors respectively.

Several smoke detectors were installed in the test room for comparative
purposes. The test facility is provided with two fire alarm panels, a Notifier AFP
200 panel, and a FCI.7200 panel. Each of these panels monitored one
photoelectric sensor and one ionization sensor. Additionally, a single spot type
detector, used for residential occupancies, was installed, see Table 3.1 for details.
The operating principles for these types of detectors will not be discussed as part
of this paper, however, the interested reader may find information in the
following sources, Bryan (1993), Bukowski and O’Laughlin (1994) and Denny

(1993).
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3.3 Location of Equipment

The locations selected for instrumentation were determined to provide a
lag time associated with the transport of combustion products and to minimize
the effects of boundary effects of the compartment walls. This was done by
balancing the requirements for maintaining an axisymmetric plume and
maximizing the distance to the sensors. The size of the room confined the
majority of the instrumentation to be located within the center of the room. The
location of the fire was then selected to provide an axisymmetric plume to
simplify the assumptions required in the analysis of the results.

The configuration of the test room is similar to the phase 2 tests
conducted by Hagen (1994). The major differences being the location of the fire
and the addition of thermocouples, to provide a wider range of measurements
across the horizontal and vertical profiles of the test room. The thermocouple
locations and elevations are summarized in Table 3.2. The locations of the

thermocouples and other instrumentation are represented in Figure 3.1.
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Table 3.2
Thermocouple Locations and Elevations

o’ff/ﬁé’ﬁteff’ thetice’ )]

47/// ﬂi.’%/‘”‘y/’/

///////// 7////// ‘r‘, ,%/,%bw/f ‘/'/ﬂ .ce“

20 2 3 m above ﬂoor‘. cofne; 1

Thermocouple Thermocouple
Reference No. Elevation and Location
1 Outside ambient temperature or hot plate
72.2:5::40.2-m -above floor, center of the room = ..~ -
3. .- §0.4 m-above floor, center of the room - - -
- 4. . -10.6 m-above floor, center of the room
< »5:..40.8 m above floor, center of the room .=~
=6 - - 41.0 m+above floor, center of the room :
7+ ]1.2 meabove floor, center of the room - ...
=080 1.4 m -above floor, center of the room™ ™ .
229 e |1:6:m“above floor, center of the room™ -+ -
10~ |1.8 m™above floor, center of the room =~ = - -
=117 7. ]12.0 m above floor, center of the room -
12 - §2.2 m above floor, center of the room -
v 13 T 2 3 m above ﬂoor center of the room

4-;

21 2.3 m above floor, corner 2
22 2.3 m above floor, corner 3
23 2.3 m above floor, corner 4
24 ambient

_ Indicates thermocouple tree # 1

W% Indicates thermocouple tree # 2
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CHAPTER IV - EXPERIMENTATION

4.1 Test Sources

The test sources were selected to cover a range of fire and nuisance
signatures. The phase 2 work of Hagen (1994) prepared a somewhat
comprehensive list of test sources, of which several sources were selected for
comparative purposes. The sources can be separated into three categories:
flaming, non-flaming and environmental. Table 4.1 identifies the sources selected
for these tests. The flaming and non-flaming sources were selected from the fist
prepared as part of phase 2 of this project, providing a range of fire sources. The
first four environmental sources were selected for two reasons, the results could
be compared to the phase 2 tests and the sources were identified as creating
significant false alarm problems for home smoke detectors. The fifth
environmental source, hamburger, was selected as being representative of a
typical cooking odor produced in a residential atmosphere, which, was identified

as being one of the two leading causes for nonoperational smoke detectors.

4.2 Experimental Procedures
Each source was tested individually to create a set of control cases.

Next, 16 combinations of multiple sources were tested. Table 4.2 is a test matrix
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Table 4.1
Test Sources

Flaming Flaming Pyrolysing | Environmental
Solid Liquid Solid Sources
paper heptane cloth disinfectant

glass cleaner
hair spray

boiling water
hamburger
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identifying the selected combinations and the test identification numbers for each
of these combinations. The combinations including either a flaming or non-
flaming source and an environmental source were selected to evaluate the ability
of the protocol detector to identify a fire in a masked environment. This may
require the ability of the detector to continuously reclassify the environmental
conditions. The combinations of environmental sources were selected to
evaluate the possibility of misclassification of multiple environmental sources as a
flaming or non-flaming fire source. A more comprehensive list identifying the
specific details of each test scenario is provided in Appendix C.

Several sets of procedures were required to produce the desired

signatures for each of the sources and/or combination of sources tested.

4.2.1 Flaming Liquid (heptane)

The heptane was burned in a 15x 15 x 1.2 cm high, square metal pan in an
attempt to maintain consistency with the phase 2 research. Hagen (1994)
conducted experiments with flaming liquids using four different size and shape
containers. Hagen (1994) has indicated that the majority of the tests that were
conducted in phase 2 used this container.

The test procedure was initiated by starting the data acquisition system

and allowing it to monitor the ambient conditions for approximately 2 minutes.
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The next step involved pouring the, 50 ml, of heptane into the container and
igniting the heptane using a propane torch. The effect of the propane torch was
characterized by Hagen (1994), with the carbon dioxide concentration being the
only signature that was affected. The time of ignition and all smoke detector

responses were recorded.

4.2.2 Flaming Solid (paper)

The amount, size and arrangement of paper was based on the results
obtained by Hagen (1994). The phase 2 experiments were conducted using 2, 8,
10 and 20 sheets of 25% cotton, 20 Ib. weight stock paper. Ten sheets of paper
were used in this phase, based on the observation by Hagen (1994) that this
quantity provided sufficient vapors for detection. In each case, the 10 sheets of
paper were shredded into slivers ranging from approximately 6.5 to 9.5 mm in
width and 50 mm in length. The paper was placed into a metal container and was
placed on the load cell. The experiment was initiated by starting the data
acquisition system and allowing 2 minutes of ambient data to be collected. The
paper was then ignited, in four locations, using a disposable lighter, at the center
of each edge of the container. The effects of the lighter were considered to be

negligible.
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4.2.3 Pyrolysing Solid (cloth)

A 50% polyester / 50% cotton blend cloth was cut into sections and
folded twice, resulting in an exposed surface area of 10.2 x 14 cm for heating.
This arrangement was initially used by Hagen (1994). The tests were again
initiated by the start of the data acquisition system, which monitored the ambient
conditions for a 2 minute period. Prior to the test, a hot plate was turned on and
allowed to stabilize at approximately350°C. At the completion of the ambient
period, the hot plate was placed on the load cell, the cloth on the hot plate, a
small weight placed on top of the cloth and a thermocouple placed at the center
between the cloth and the surface of the hot plate. The weight was used to keep
the cloth and thermocouple in place throughout the test. The thermocouple was

used to observe any noticeable changes in heating.

4.2.4 Nuisance Sources

The following five nuisance sources were used in this series of tests:

1. Disinfectant (79 % ethanol, 20.9 % inert ingredients, 0.1% Alkyl
(50% C,4, 40% Cy2, 10% Cy¢))

2. Glass cleaner (Ammonia D, no further description provided)
3. Hairspray (SD Alcohol, Butane, Propane, Vinyl Acetate,
Crotonic Acid/Vinyl Neodecanoate Copolymer, Aminomethyl

Propanol, Fragrance, and possibly Isobutane)

4. Boiling water (approximately 150 ml)
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5. Hamburger (approximately 70 grams)

Three sets of procedures were followed for the nuisance sources because
of the inherent characteristics of each source. At the completion of monitoring
the ambient conditions for 2 minutes, each source was applied. One procedure
was used for the disinfectant, glass cleaner and hairspray experiments. The
application of these sources consisted of vigorously spraying the sample
throughou; the space for 90 seconds, allowing diffusion to transport the sources
closer to the sensors and analyzers.

The next procedure was for the boiling water. A metal container holding
500 ml of water was placed on a hot plate outside of the test room and covered.
The water was brought to a boil and then carefully transported into the test room
and the cover removed. The water was boiled for approximately 10 minutes.
The power source for the hotplate was then shut off. At the completion of the
each test, the remaining water was measured. Indicating that an average of 150
ml was introduced into the test room.

The final procedure was for the hamburger experiments. At the
completion of the ambient period, a hot plate, at approximately 350°C, was

placed on the load cell, the hamburger was then placed on the hot plate with a
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thermocouple placed between the two surfaces. The thermocouple was used to

observe any significant changes in heating.

4.2.5 Tests with Multiple Sources

The tests involving multiple sources followed the same procedure for the
nuisance source involved in the test scenario. The fire or second nuisance source
was then implemented at the completion of 90 seconds after the end of the
ambient data collection. The procedures were the same as those prescribed

above.

4.2 6 Termination of Tests

Several criteria were used to decide when to terminate each test,
however, data was collected for a minimum of 10 minutes. The termination

criteria are as follows:

1. The fuel was consumed and the sensor outputs were passed the
peak values and descending continuously.

2. All five smoke detectors were in the alarm mode.

3. The test duration reached 25 minutes.
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CHAPTER V - DATA ANALYSIS

5.1 Introduction

The capability of using tin dioxide gas sensors as part of a protocol
detector has been established as part of the first two phases of this project. This
analysis will include estimations of gas concentrations, velocities and
temperatures within the fire plume, ceiling jet and smoke léyer. These
estimations will be compared to the test data collected as part of this research
phase. Characteristic signals will then be developed for the sensors used to

make these measurements.

5.2 Theory and Method of Analysis

The theory to be used in this analysis has been established for flaming
fires, the theory for non-flaming fires and nuisance sources has not, thus, this
analysis will be primarily focused on the flaming fires. The non-flaming fires
and nuisance source scenarios will be addressed where possible. As an example,
the calculations for test 32 will be provided in section 5.3.

This analysis will use the temperature profile within the compartment to
calculate gas concentrations in the fire plume, ceiling jet and smoke layer. The

gas concentrations will be considered to be proportional to the temperature at
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each location. In order to make predictions on the temperatures and gas
concentrations, the heat release rate of the fire must first be calculated.

The mass loss rate was measured using a load cell, as described in
Chapter 3. The mass loss rate will be used to calculate the heat release rate of
each fire using one of the following relationships described by Drysdale (1985):

. m-AH:
Q0= ;

(5.1a)

or

O=rm"-AH.. A (5.1b)

In these equations, QO is the heat release rate (kW), m is the total mass loss of
fuel (g), m" is the mass loss rate per unit area (g/mzls), AH, is the heat of
combustion (kJ/g), A is the exposed surface area of the fuel (mz) and t is the test
duration (s). The mass loss rate was observed to be nearly constant as
represented by the constant slope in the mass loss history graphs. Therefore,
equation (5.1a) will be used to represent an average heat release rate. A
representative mass loss history plot for flaming heptane is provided in Figure
5.1.

The heat release rate can be used to estimate the temperature rise in the
fire plume, AT, the plume velocity, uy, and the plume radius, b,r. Heskestad

(1995) indicated that the relationships developed for these quantities based on
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Mass vs. Time

Figure 5.1
Mass Loss History for Flaming Heptane
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the Morton, Taylor and Turner (1956) weak-plume theory have been supported

by measurements in fire plumes. The equations are as follows:

AT, =91[T, / (ge,p N Q2 (2 2,)™° (5.2)
Uy = 34[g/(c,pT )" 0" (z-2)™" (5.3)
b, =012(T, I T,)(z-z,) (5.4)

In these equations, AT, (K) is the plume centerline temperature increase, 7., (K)
is the ambient temperature, g (mZ/s) is gravity, ¢, is the specific heat (J/kg-K),
p . is the ambient density, Q. is the convective heat release rate, (z - z;) is the
elevation above the virtual origin and b, is the point where the temperature has
declined to 0.5 AT,

The virtual origin is used to approximate the location of the point source
of energy assumed in this theoretical approach.- Heskestad (1995) provides
several correlations that have been developed to locate the virtual origin. Two
methods will be used for comparative purposes. The method developed by
Cetegen et al. (1984) and the method developed by Heskestad (1983).

The calculation of the virtual origin by the method of Cetegen et al.
(1984), requires the calculation of a nondimensional parameter Q*. This

parameter is calculated by the following equation:
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Q.
o= pwcmegl/zDS/z (5.5)

Correlations for the virtual origin have been developed for burners flush with the
floor and for burners located above the floor. These correlations are as follows:

z,/ D=c+109-Q**"°, Q*>1 (5.6a)
and

2,/ D=c+109-0%"  Q*<l (5.6b)
Where ¢ = -0.50 for burners flush to the floor and ¢ = -0.80 for burners above the
floor. For this study, the value of ¢ = -0.80 is used with these equations, because
the load cell elevated the fire above floor level.

The correlation deQeloped by Heskestad (1983) is as follows:

2,/ D==102+F-Q** /D 5.7
where F is a complex dimensional function that was observed to behave as a
constant, F = 0.083 m kW>",

Equation (5.2) will be used with equations (5.6) and (5.7) to compare the
estimated temperature increase to the measured value attained at the elevation of
thermocouple 19. Equation (5.4) will then be used to verify the axisymmetric
plume assumption used in this analysis by comparing the estimated plume radius

to the distance between the centerline of the fire and the compartment walls.
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Equation (5.3) will be used to estimate the centerline velocity of the fluid in the
plume at the ceiling elevation.

Next, the volumetric air entrainment rate will be calculated for the fire
plume. This information will be used to determine the amount of dilution that
will occur in the plume as a result of entrainment. This is required to estimate
the gas concentrations at the location of the sensors. Again, the correlations
developed for the air entrainment into the fire plume are baséd on the point
source theory developed by Morton et al. (1956). The mass entrainment
relationship deduced by Morton et al. (1956), is as follows:

=k, 0"z (5.8)

Milke and Mowrer (1993) presented several correlations developed for
calculating the mass entrainment based on the point source plume theory.
Again, two models have been selected for comparative purposes, the model
developed by Zukoski et al. (1981) and the model developed by Heskestad
(1983).

The model developed by Zukoski et al. (1981) utilizes the virtual origin
correlation presented as equation (5.6). The correlation for the mass entrainment

in the fire plume is as follows:

i, = 0.076- 0" (z - z,)*? (5.9
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As a comparison, the model developed by Heskestad (1983) will be used.
This correlation is expressed as:
m, =00054-0.z/z, for z <z, (5.10a)
and
m, =0071-0."*(z~2,)*® +0002- 0, forz<z, (5.10b)
where zg, the limiting elevation, corresponds to the mean flame height, where
the plume centerline temperature rise, AT, = 500 K. The correlation is as
follows:
z, =2, +0166-0%* (5.11)
where z, is calculated using equation (5.7).

If the radiative fraction y, , is assumed to be 0.3, then Q. ~ 0.7Qand

assuming the second term in equation (5.10b) to be negligible, then equation
(5.10b) can be rewritten in terms of the total heat release rate (Milke and
Mowrer., 1993), as follows:
m, = 00630 (z —z,)** (5.12)
The volumetric flow rate can now be calculated using equations (5.9)

and (5.12) and an ambient density of 1.2 kg/m3 for air at a room temperature of

20°C.
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The volumetric entrainment rate using the Zukoski method is as follows:
V., = 00633-0"(z-z,)*"* (5.13)
and the volumetric entrainment rate using the Heskestad method is as follows:
V, ~00525-0"(z~z,)*? (5.14)
These equations do not take into account the transport time lag for the plume to

reach the ceiling. This can be estimated using the correlation presented by

Newman (1988) and Mowrer (1990):

473
= (5.15)

pl 3. Q}B
The maximum temperature and velocity in the ceiling jet was calculated
using the correlations developed by Alpert (1971, 1972) and modified by Evans

(1995). The equations for the maximum temperature increase are as follows:

2/3
T-T, = I6ZSQ,3 forr/H<0.18 (5.16a)
and
2/3 -
T-T, =ﬁ3@éﬁ_ for t/H > 0.18 (5.16b)

The equations for the maximum velocity are as follows:

Q V3
U= 0.96(E) forr/H<0.15 (5.17a)
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and

N O.l 95Q1/3 Hll2

5/6
r

U forr/H>0.15 (5.17b)

where T("C) is temperature, U(n/s) is velocity, Q(kW) is the total energy
release rate, r(m) is radial position and H(m) is ceiling height.

The two sets of equations apply to the region, close to the plume
impingement on the ceiling, where there is a transitional effect as the flow of
gases changes from vertical movement to horizontal movement beneath the
ceiling and the region where there is only horizontal movement. The region of |
impingement is usually termed the turning region.

The location of the maximum temperature in the ceiling jet has been
observed at locations within a couple of inches from the ceiling. The
temperature approaches room temperature at approximately 5.5 to 12.5 % of the
total ceiling height.

As with the plume correlations, the transport lag time is not considered.
This can be estimated using the correlation presented by Newman (1988) and
Mowrer (1990):

e ¢ H)-02T
I 71207 [(r/H)"‘5 — 02

(5.18)
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The layer descent due to entrainment only can be expressed for the case

of constant cross-sectional area as (Milke and Mowrer, 1993):

; 3o pp L \5/3
£=£= k Q" (H-2z,) (5.19)

di 4, [4,-004n(H-z,)]

Making use of the measured gas concentrations and temperature and the
ideal gas law, the number of moles can be calculated for each gas specie. The
quantity of fuel consumed is known, thus, the yield factor for each material can
be estimated. The specie yield is proportional to the measured gas concentration
by the following relationship.

)
C | LY (5.20)

m

(]

The concentration of each specie, C,, is related to the related yield, Y;,

mass loss rate, 17, , and the mass flow rate past each sensor. The species yield

will be calculated for the two entrainment models using equations (5.14) and
(5.15) to calculate the volumetric air entraiment rates and equation (5.19) to
calculate the layer descent rate. Using the ideal gas law, the molecular weight
of each specie and the mass of fuel burned, the specie yield can then be

calculated. These values will then be compared to literature values.
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5.3 Analysis

As previously discussed in section 5.2, the first parameter to calculate is
the heat release rate. Two methods were provided as equations (5.1a) and
(5.1b), for this example both equations will be utilized, to demonstrate the
similarity in results using each equation.

_ (38g)-(44.6kJ / g)
B (110s)

0 = 1541kW (5.1a)

O=(1487—8).(446k7 1 g)-(0232m?) = 1539kW  (5.1b)

m*-s
The results of the five heptane combination tests are provided in Table 5.1.

Table 5.1 Calculation of Heat Release Rate for Heptane Fires

AH (kJ/g): 44.6 Mass (g): 38.0
Test # Diameter Duration (s) QqestkW)

4 0.172 134 12.7

5 0.172 125 13.6

6 0.172 127 13.3

7 0.172 128 13.3

32 0.172 110 15.4

Next, equation (5.5) was used to calculate the nondimensional parameter

Q*, so that the virtual origin could be calculated using equation (5.6b). The
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convective fraction of the heat release rate was assumed to be 0.7, such that

0. ~070.
OF = 0.7-(1541kW) — 07668

_kg).[ _E_j . ﬂ) %
(1.2m3 1.0kg.°K (305°K) (9.8152 (0.172m) (5.5)

The virtual origin was then calculated using the method desc;ribed by Cetegen et
al. (1984), in equation (5.6b).
z,/ D=-080+1.09-(0.7668)*" =0.1132 (5.6b)
or
2z, =01132-(0172m) = 0.01946
The virtual origin was then calculated using the method described by Heskestad

(1983), in equation (5.7).

2y / D= —102 +(0.083mkW %) - (1541)%° / (0172m) = 04210  (5.7)
0

or

2z, =04210-(0.172m) = 0.07242
The results of the five heptane combination tests are provided in the following

table.
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Table 5.2 Calculation of Virtual Origin for Heptane Fires

Test # Q* Z,(m) z,,1 (m)
4 0.655 0.004 0.054
5 0.702 0.011 0.060
6 0.691 0.009 0.059
7 0.686 0.008 0.058
32 0.798 0.024 0.072
Cetegen Cetegen Heskestad

Using the calculated virtual origin offsets with equation (5.2), an
estimate can be made for the maximum temperature rise at the plume centerline,
at the elevation of thermocouple 19, so that, a comparison can be made. The
calculation will be made using the virtual offsets attained using the method
described by Heskestad.

[ T

305K

[0

QT ISAUIPY(LTRA—0.0237) ™ = 5085 K (5.2)

The results for the two methods are presented in the following table.
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Table 5.3 Calculation of Maximum Temperature Rise at Plume Centerline

Test# |ATo1c19es| AToxc 19,5t | To.1C 19.meas (K] To7c 19,e5t(K) {To.7c 19,e5t(K)
4 39 41 339 344 346
5 42 45 334 349 352
6 42 44 335 348 350
7 4] 43 342 344 346
32 48 51 352 353 356
Cetegen [Heskestad Cetegen [Heskestad

The calculated temperatures are in good agreement with the measured
values, suggesting that the axisymmetric plume assumption is correct.
Additionally, this suggests that the placement of the thermocouple tree is at or
close to the plume centerline.

The plume radius was calculated for both methods using equation (5.4).
The calculation will be made using the virtual offsets attained using the method

described by Cetegen.

3445°K
b= 0.12[
aT 30

o

1/2
J (1835m—0.0237m) = 02310m (5.4)

The results for the two methods are presented in the following table.
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Table 5.4 Calculation of Plume Radius

Test# bt ceiting (M)] bar ceiting (M) | Distance (m)
4 0.24 0.23 0.86
5 0.24 0.22 0.86
6 0.24 0.23 0.86
7 0.24 0.23 0.86
32 0.23 0.22 0.86
Cetegen Heskestad

The calculated values for the plume radius are significantly lower than
the minimum distance from the center of the fire to the wall, again, suggesting
that the assumption of an axisymmetric plume is correct.

Similarly, the maximum velocity in the ceiling jet was calculated using
equation (5.3). The calculation will be made using the virtual offsets attained

using the method described by Cetegen.

981
- s . : 3 _
%— @W/@K) 62]@/ m;) GOS K)) (Q7 154W (1833037 ].8421 (3.3)

The results for the two methods are presented in the following table.
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Table 5.5 Calculation of Maximum Velocity in Plume

Test# Jugeq (M/S) fug eq (mV/5)
4 1.70 1.74
5 1.74 1.78
6 1.74 1.76
7 1.74 1.78
32 1.84 1.89
Cetegen [Heskestad

Next, the ceiling jet region was analyzed, for the maximum temperature
rise and maximum velocity. The maximum temperature in the ceiling jet was

calculated using equation (5.16b).

T_T = 583(1541kW /121m)*"
° 17622m

=18.04°K (5.16b)

The calculations are at the height of thermocouple 13, the results are presented

in the following table.

Table 5.6 Calculation of Maximum Temperature Rise in the Ceiling Jet

Test#§ ATorcizest | Torci3est T0,7¢ 13,meas
4 15 320 326
5 16 323 322
6 16 322 322
7 16 318 315
32 18 323 329
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The calculation of the maximum temperature within the ceiling jet is
again in good agreement with the measured values attained at thermocouple 13,
suggesting that the placement of the equipment was in the ceiling jet region.

The maximum velocity was then calculated for the ceiling jet region,

using equation (5.17b).

_ 01951541k (1.7622m)

=0.5495m/ 5.17b
(121m)™* s G

U

The results are presented in the following table.

Table 5.7 Calculation of Maximum Velocity in Ceiling Jet

Test # Umax
4 0.52
5 0.53
6 0.53
7 0.53
32 0.55

The maximum velocities calculated for the center of the room are
considerably lower than the estimated values for the plume centerline, as
expected, due to the air entrainment and heat transfer losses.

Next, equations (5.15) and (5.18) were used to calculate the transport lag

times associated with the plume and ceiling jet regions. The addition of the two
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lag times is representative for the total lag time for the products leaving the

combustion zone to reach the location of the sensors.

_2-(17622m)*"
P 3. (15410

~ 057035 (5.15)

(17622my**  [(121m/17622m)-02]
Y 1205460 [(121m/17622m)" ~02" |

~09672s  (5.18)

Indicating a total lag time of 1.54s, which is reasonable, given the

location of the fire and the location of the devices. The results are presented in

the following table.
Table 5.8 Calculation of Lag Times
Test#] t,(s) te (s) tot
4 0.64 1.01 1.65
5 0.61 1.00 1.61
6 0.62 1.00 1.62
7 0.62 1.00 1.62
32 0.57 0.97 1.54

A spreadsheet model was developed to calculate the volumetric air
entrainment into the plume, the layer descent rate and the species yields.

The calculations are presented in Appendix E.
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The calculated yields for carbon monoxide and carbon dioxide are
presented in Table 5.9 and Table 5.10, respectively. The calculated yields for
carbon monoxide and carbon dioxide were compared to the values measured by
Tewarson (1995). The estimated yields for carbon monoxide over-predicted the
values reported by Tewarson (1995), conversely, the estimated yields for carbon
dioxide were under-predicted.

The CO/CO, ratios were compared to the reported vaiue of 0.01 by
Tsuchiya. See Figure 5.1 for the comparative plot. The values were compared |
for the period after the fires had achieved a steady burning rate to the end of the
test. The results are in relative agreement with the reported value of 0.01.

A comparison of the average CO/CO, ratios for the various fire source
combinations, indicates that there is approximately one order of magnitude
difference in the values for the flaming fires and the pyrolysing solids. The
average values were calculated for the steady period of burning/heating to the

end of the test. The average CO/CO, ratios are presented in Table 5.11.
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Table 5.9
Comparison of Estimated and Reported CO Yields

Test Mass Loss Average Estimated § Published }Estimated
Number a/s Measured J Yield Yield Yield
lConcentratio Factor Factor Factor
CO ppm g/g 9/g g/g
4 0.3 | 80 0.03 0.01 0.02
5 0.3 } 55 0.02 0.01 0.01
6 0.3 72 0.02 0.01 0.02
7 03 | 38 0.01 0.01 0.01
32 03 | 53 0.02 0.01 0.01

Cetegen/Zukoski Tewarson  Heskestad
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Table 5.10
Comparison of Estimated and Reported CO, Yields

Test Mass Loss | Maximum Estimated | Published § Estimated
Number ols Measured J Yield Yield Yield

HConcentratio Factor Factor Factor

CO, ppm g/g a/g g9/g

4 0.3 5202 27 2.8 2.1

5 0.3 4720 1.6 2.9 1.3

6 0.3 4941 1.8 29 15

7 0.3 5352 2.0 2.9 1.7

32 0.3 5082 2.1 29 17
Cetegen/Zukoski Tewarson  Heskestad
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Figure 5.2
Comparison of CO/CO, Ratios
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Table 5.11
Comparison of Average CO/CO, Ratios

Flaming Heptane Combinations -
Test # 4 5 6 7 32
JCO/CO, 0.02 0.01 0.02 0.01 0.01
I;ILaming Paper Combinations B
Test # 9 10 m ] 12 ] 13 |
CO/CO, 0.11 0.09 0.08 0.14 0.06
Pyrolysing Cloth Combinations
Test # 37 38 39 40 41
CO/CO, 0.85 0.24 0.49 0.29 0.23
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CHAPTER VI - DISCUSSION AND CONCLUSIONS -

6.1 Discussion of Results

It was observed from the experiments with combined sources that the
expert system, developed by Hagen (1994) in phase 2 of this project, would
require modifications. However, such modifications are beyond the scope of
this paper. It is anticipated that a system based on maximum values would result
in the misclassification of the majority of the experiments conducted with
combined sources. The dependence of the expert system on the response of the
TGS 822 and TGS 880 sensors for discriminating between nuisance and
smoldering/pyrolysing sources would not be sufficient.

It was observed in the experiments with combined sources that the
signatures provided by the TGS 822 sensor were representative of nuisance
sources. In most cases, the TGS 822 sensor was not observed to have any
significant change in output when the fire source was introduced, and the sensor
would follow similar patterns to the tests with single nuisance sources. The
TGS 880 sensor would also follow the similar pattern of the tests with single
nuisance sources, however, the sensor output was observed to have a tendency to
decrease when the fire source was introduced. The output was observed to

approach the magnitude of the output achieved in the tests of a single fire
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source, in an asymptotic manner. The tendency of the TGS 880 sensor output to
decrease as the fire was introduced would render the expert system ineffective
based on the maximum value output. The maximum level achieved is rather a
measure of the nuisance source and not the fire source.

The trends observed for the carbon monoxide and carbon dioxide
concentrations, in the tests with combined sources, were similar to those
observed in the tests with single fire sources. The test combinations with the
disinfectant seem to have additional effects, because the measured carbon
monoxide concentrations were significantly higher than those measured in the
tests with single sources. This effect seems to be more than a simple additive
effect, possibly synergistic, but the determination of this effect is beyond the
scope of this paper.

The use of the carbon monoxide and carbon dioxide signatures provide a
good indication of the source present, however, this would not be sufficient to
provide the level of discrimination required. The expert system developed as
part of phase 2 required additional sensors to achieve the correct classification of
87% of the sources tested as part of that phase.

The behavior of the photocell was sporadic, possibly due to the effects of
light entering the test room through the window. This behavior was also

observed in the phase 2 testing. It was anticipated that the change in orientation
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of the laser and photocell arrangement from the phase 2 testing would have more
of an impact in reducing outside effects.

Additionally, the procedures followed in this set of experiments may not
have provided sufficient signatures for better response by the TGS 822 and TGS
880 sensors. Without a more accurate description by the manufacturer of the
sensitivity of the TGS 822 sensor and the TGS 880 sensor, it is not possible to
determine if there are unseen effects occurring as a result of dnft in sensor
output or surface contamination. The procedures followed for the nuisance
sources may have resulted in concentrations that were higher than expected.

It was anticipated that the combination of a nuisance source and a fire
source would result in more distinct changes than were observed. The TGS 822
and TGS 880 signature were less effective in discriminating sources than were
anticipated when the experiments were planned. This may be partially attributed
to the selection of combinations based on the single sources experiments

conducted as part of phase 2.

6.2 Conclusions
In order to provide an adequate level of discrimination for tests with
multiple sources, additional sensors are required. It is more difficult to

discriminate between signatures in tests with multiple sources than in tests with
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single sources. The use of carbon dioxide and carbon dioxide concentrations
and CO/CO2 ratios were effective in discriminating between flaming and
pyrolysing sources for these experiments. The development of an expert system
based on the maximum sensor output levels would not be effective, based on the

results attained by these tests.

6.3 Considerations for Future Research

The number and type of sensors could be increased to provide a more
diverse profile for testing. This would allow for a higher level of discrimination
than can be attained with the limited number of sensors used for these
experiments. The inability of the TGS 822 and TGS 880 sensors to discriminate
between combustion effects and nuisance effects, suggests that sensors with a
higher level of selectivity should be used. Tin dioxide sensors can be
manufactured to have a sensitivity to a specific type of gas, such as hydrogen,
carbon monoxide, hydro-carbons, etc. (Ihokura and Watson, 1994).
Additionally, Cavivicci et al. (1994) demonstrated that a thin film gas sensor can
be manufactured to provide a large array of micro-machined, silicon-based
sensors . It is suggested that a set of more selective sensors be used for future

testing.
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Sensor drift may have resulted in unseen effects associated with the
output of these devices, which could be reduced or eliminated by the design of a
delay circuit for these devices (Thokura and Watson, 1994). Additionally, there
may have been effects associated with sensor contamination, which would also
effect the sensor output readings. This can be reduced by cycling the heater
voltage between a high level and a low level. The low level would allow for a
higher level of sensitivity in detecting gas concentrations and the higher level
would be used for decreasing the effects of contamination (Thokura and Watson,
1994).

It would be useful to measure the velocity profiles in the ceiling jet. This
would allow for better estimates of carbon monoxide and carbon dioxide yields,
because the mass flow rate could be more accurately characterized at the
location of the sensors.

Additional combinations can be tested to further evaluate the effects of
the interaction of nuisance sources and fire sources. This set of experiments
does not represent a complete range of sources that can be tested in multiple
source combinations. The procedures could be modified to more accurately

represent a nuisance environment.
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Appendix A: Comparison of Detection Times for
Conventional Detectors and PCA
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Detection Time (min) Scores
File | Type: | Detector | PCA Model t, t, t,
72904 s 11:31 11:58 182 -137 1.44
72906 s 14:06 9:36 327 =235 1.84
72702 5 13:40 11:54 221 -2.67 1.11
72505 s 13:46 8:14 035 474 0.05
72507 s 12:38 9:20 270 732 1.72
80102 s 13:58 10:48 300 570 149
80806 s 15:24 12:22 398 563 1.70
80905 s 14:24 11:18 226 404 1.58
72902 s — 12:40 413 =362 2.39
72602 s - 10:52 143 231 0.62
80402 ] - 11:18 1.73 564 -0.51
72502 s — 10:58 077 435 0.38
80302 s — 11:14 249 502 0.85
80502 s — 10:52 192 -392 206
72709 s - - —_ - -
72506 s - - - - -
72710 f — 0:28 084 067 6.25
72910 f — 0:14 0.12 -208 6.22
80804 f — 0:12 084 -125 9.32
80505 f - 0:08 144 378 1701
80507 f — 0:10 126 220 1366
80508 f - 0:06 057 -360 21.89
80906 f — 0:10 054 -589 29.62
80306 f - 0:08 062 267 17.06
72501 f 0:16 0:08 -008 343 2367
72601 f 0:14 0:08 0.12 069 33.13
72607 f 1:30 0:18 196 474 13.14
72701 f 0:16 0:08 -125 -524 1598
72704 f 0:58 0:24 022 -1.18 8.07
72705 f 0:34 0:20 150 463 727
72711 f 0:58 0:12 021 004 598
72901 f 0:22 0:08 -0.02 -353 34.18
72905 f 0:40 0:08 -1.14 046 9.57
72907 f 1:38 0:10 0.02 1.28 11.62
@ s: smoldering, n: nuisance, f: flaming, —: no detection
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Detection Time {min) Scores

File | Typec | Detector | PCA Model | 1, t, i,

80101 f 0:22 0:08 027 426 6.06
80104 f 0:24 0:10 1.19 234 8.47
80105 f 1:50 0:10 -131 =254 1180
80108 f 0:20 0:08 084 -385 16.00
80301 f 0:20 0:08 078 -366 2490
80304 f 0:20 0:10 -108 -463 1398
80401 f 0:14 0:08 -233 -545 3165
80501 f 0:20 0:08 -2.13 =348 23.13
80801 f 0:22 0:08 071 -005 32.18
80802 f 3:40 0:38 -0.15 -049 6.51
80803 f 0:32 0:12 -054 =332 2671
80805 f 1:20 0:08 065 =306 2144
80808 f 0:40 1:10 -138 435 2626
80809 f 4:20 0:16 -027 -2.85 8.23
80810 f 2:08 0:12 ~-142 226 1047
80901 f 0:22 0:08 008 454 2583
72911 n 0:10 1:04 2.46 -1.61 1.05
72608 n 0:10 0:10 3527 -7921 941
80410 n 0:16 0:10 3341 -81.11 =774
80407 n 16:38 9:24 055 =509 1.61
72708 n 21:02 20:20 130 =307 -0.39
72503 n — 0:08 2854 -56.82 098
72603 n - 0:08 2766 -5560 -0.64
72604 n —_ 0:10 3441 -80.81 -6.58
72605 n - 0:48 314 64 247
72609 n —_ 1:48 324 0.04 1.04
72703 n - 0:30 2394 -32.14 292
72706 n - 5:46 2.12 =305 0.80
72903 n - 0:08 29.10 5229 -1.26
80303 n — 0:08 2946 5756 -1.82
80305 n - 8:30 6.76 924 152
80307 n -_ 8:30 204 -1074 -1.36
80403 n - 0:10 2937 -6104 -l1.64
80404 n - 3:40 165 =292 1.11

e s: smoldering, n: nuisance, f: flaming, —: no detection
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Detection Time {min) Scores
File | Type" | Detector | PCA Model 8 t, t A
80405 | n — 1:08 093 -524 172
80406 | =n - 1:18 3.04 -6.13 092
80408 | n - 7:56 1.51 -5.82 0.80
80506 { n - 7:24 786 -1007 1.75
80807 | n - 4:34 272 —-4381 0.3
80103 | n - 0:08 2888 -5467 -039
80106 | n - 0:08 2738 5537 -1.21
80409 | n — 0:10 2456 -5539 -253
80503 | n — 0:10 3103 -6035 -1.85
72909 | n - - - - -
80107 | n - - — - -
80504 | n - - — - —_
80902 | n - - - - -
80903 | n - - - - —_
80904 | n - - - -
72504 | n - -_ -
72706 | n - - —
72707 | n - - —
72908 | n - - —

e s: smoldering, n: nuisance, f: flaming, —: no detection
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Appendix C: Data Summaries
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Optical Density vs. Time
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Temperature Rise at TC 13 vs. Time
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Optical Density vs. Time
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Temperature Rise at TC 13 vs. Time
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Optical Density vs. Time
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Temperature Rise at TC 13 vs. Time
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CO Concentration vs. Time
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Temperature Rise at TC 13 vs. Time
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CO Concentration vs. Time
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Optical Density vs. Time
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CO2 Concentration vs. Time
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Optical Density vs. Time
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Appendix E: Example Calculations Used in Analysis
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The carbon monoxide and carbon dioxide yields were estimated by the
following method.
1. The total lag time was calculated for the ceiling jet to reach the farthest
ceiling-wall interface. The time lag for the plume region, 0.57 seconds, was
calculated in section 5.3. Using equation (5.18) with a maximum radius of 3.97
m, a time lag of approximately 8 seconds was calculated for the ceiling jet
region, resulting in a total lag time of 8.5 seconds.
2. The volume and cross-sectional area of test room are known. The
volume of air entrained into the plume was calculated using equations (5.13) and
(5.14) for the Cetegen/Zukoski and Heskestad methods, respectively. The total
volume of air entrained using equations (5.13) and (5.14) were 6.6 m’ and 5.3
m3, respectively.
3. The gas concentration was known, therefore, the volume of space
occupied by each species and the number of moles, n, could be calculated.
The calculated values are as follows:

Volume of CO ngg  Volume of CO, ngq,
Cetegen/Zukoski ~ 0.00035m’ 0.013mol 0.034m> 1.8 mol

Heskestad 0.00028 m*> 0.010 mol 0.027 m’ 1.5 mol
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4, The mass of fuel and the molecular weight of each species is known,
therefore, the mass yields can be calculated. The calculated values are as
follows:
Yoo Yco
Cetegen/Zukoski 002 2.1
Heskestad 001 1.7

The calculations using the spreadsheet model are as follows.

223



Calculations of air entrainment in fire plume
using Zukoski/Cetegen and Heskestad methods

test32 Zukaski/Cetegen Heskestad
vroom viot viot
cet 23.61 6.60 5.32
Time Vent Viot z Vent Viet z

0 0.00 0.00 1.76 0.00 0.00 1.76

5 0.00 0.00 1.76 0.00 0.00 1.76
10 040 0.40 1.76 0.31 0.31 1.76
15 0.40 0.80 1.73 0.31 0.62 1.74
20 0.38 1.18 1.70 0.30 0.92 1.72
25 0.38 1.56 1.67 0.29 1.21 1.69
30 0.36 1.92 1.65 0.29 1.50 1.67
35 0.35 228 1.62 0.28 1.78 1.65
40 0.34 282 1.59 0.27 2.05 1.63
45 0.34 2.96 1.57 0.27 232 1.61
50 0.33 3.28 1.54 0.26 2.58 1.59
55 0.32 3.60 1.52 0.26 283 1.57
60 0.31 39 1.49 0.25 3.08 1.58
65 0.30 4.21 1.47 0.25 3.33 1.53
70 0.29 4.50 1.45 0.24 3.57 1.51
75 0.29 4.79 1.43 0.24 3.81 1.50
80 0.28 5.06 1.40 023 4.04 1.48
85 0.27 5.34 1.38 0.23 4.26 1.46
90 0.26 5.60 1.36 0.22 448 1.44
95 0.26 5.86 1.34 0.22 4.70 1.43
100 0.25 6.11 1.32 0.21 4.91 1.41
105 0.25 6.36 1.31 0.21 5.12 1.40
110 0.24 6.60 1.28 0.20 532 1.38
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Calculation of CO and CO2 Yields for Test 32

mass (g)
38
CO2 [ppm]
5082
CO [ppm]
53
Zukoski/Cetegen
Veco2 Vco
0.034 0.00035
mol co2 mol co
1.805 0.013

yield co2 vyield co
2.1 0.02

temp
328

MW (CO2)

44

MW (CO)
28
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AH. (kJ/g)
446
Heskestad
Veo2 Vco
0.027 0.00028
mol co2 mol co
1.457 0.010

yield co2 vyield co
1.7 0.01
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Section 11

Methods to Process Sensor Data for Smart Fire Detection
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1. Background

This section of the report summarizes the research results that have been achieved
on methods to process sensor data for smart fire detection. The interim progress reports
that have been submitted give details of the results that are summarized here. In addition,
a reprint giving additional details is included in the Appendix of this section. Finally, the
future direction of the research, including collaboration with NIST, is discussed.

The initial research involved a study of an olfactory neural network model that was
published by Freeman and co-workers [1-3]. This model was aimed at developing an
understanding of how the nose processes information to detect odors. Freeman’s work
started from animal experiments and progressed over approximately the last 25 years to a
systems level model. Simulations of his most detailed model, the KIII model, show that
the olfactory network acts as a chaotic oscillatory system. Yao, et al., published an
interesting application of Freeman’s models to an industrial fault detection problem
involving detection of faulty screws from good screws[3]. Yao, et al. achieved 100%
perfect detection of faulty parts with an olfactory models [3]. Because this fault detection
problem is very similar to the problem of detecting fires, the olfactory approach appeared
very promising for detecting fires. However, after examining the same data and model,
the published results could not be duplicated, leading to a suspicion that the published
results were incorrect. Consequently, the olfactory model, while having a number of
interesting features, was dismissed for the fire detection application.

Next, the use of expert systems and standard neural networks was investigated.

The data used was from the large-scale fire experiments, reported previously in Section I.
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Results of applying an expert system by Hagen was summarized in Figure 2.7 and Table
2.9. Asindicated in Table 2.9, only 76% of the flaming fires, 50% of the smoldering fires
and 89% of the nuisance sources were correctly classified. Improvement of these
percentages was pursued through the application of a multivariate statistical technique,

principal component analysis (PCA).

2. Principal Component Analysis

The type of statistical analysis, a principal component analysis (PCA), makes use of the
maximum values measured by each sensor for each test. The data are arranged in a data
matrix, X [8,10-12]. The number of rows in X, n, equals the number of experimental
measurements made. methods are available to handle the case where some of the x; Is are
missing for particular rows [4]. PCA determines the linear combinations of the maxima that
are capable of explaining most of the variations in the measurements. In most applications,
PCA achieves a very large reduction in the number of dimensions, without a significant
loss of accuracy. For example, for a set of 41 measurements from a chemical plant, four
PCA components were able to account for 80% of the variation in the data [5].

Specifically, the PCA approach seeks to maximize:

pI X Xp) 1)
with the constraint of prlrpl =1.

p1 is 2 matrix of coefficients, referred to as the principal components. As expressed,

the solution of equation (1) yields the most important direction, p;, of the maximum variation
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of the data. Equation (1) is then re-expressed to determine the second most important
direction, p,, etc. The number of coefficients selected for the PCA approach is based upon
using the least number of principal components which provide sufficiently accurate predictions.
For this application, an accuracy of 75-80 percent was judged acceptable.

The predictions of the data are provide by a product of the principal components
matrix, P, with a score matrix, T, as presented in equation (2).
X =TPT V)

The column vectors in the P and T matrices are required to be orthogonal, i.e.

Li=j
= 0,i#]

T=XP 3)
Consequently, a linear combination of scores, ¢, and coefficients, p; , are used to
reconstruct the raw sensor measurements, as expressed in equation (4) for three principal
components.
X =tp; +1t2p2 +13P3 @)
Measurements from the following six sensors used in the tests are applied to develop
the PCA model: CO, CO,, two Taguchi sensors (T880 and T822), temperature and light
obscuration. The data for each sensor is scaled to zero mean and unit variance. The data
collected from each sensor prior to the introduction of the source is used to establish normal,

background conditions for that test. Characterizing ambient conditions was especially
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important given the unconditioned nature of the test room. Three PCA components explain
approximately 76% of the variability in the ambient data (collected two minutes prior to the
introduction of any source). Consequently, three components are used to classify the sources.
The squared difference between the raw sensor values and the reconstructed values is
called the squared prediction error (SPE). The expression for the SPE with three principal

components is:
2
SPE=(Xiit1plit2p2 i‘t3p3) &)

Both the scores, #;, and the SPE reflect all of the sensor measurements because both
the scores and the SPE involve data compression as well as synthesis. The SPE is used to
identify the existence of an abnormal situation, with its confidence limit set at 99.5%. Where a
set of measurements exceed the SPE outside of the established limit in three successive scans
(with a scan rate of 2 sec. for all measurements), the identified conditions are considered to be
“abnormal”. The SPE successfully identifies conditions generated in all 87 tests as differing
from normal conditions.

Following identification of abnormal conditions, the PCA is applied to classify the
nature of the source. The scores (7; ) are used to distinguish the type of source, using the

following rules:

e if#;>5, then the source is a flaming fire
o if -8<#, <0, then the source is a smoldering fire
e otherwise the source is a nuisance source.

The results of applying the above rules are summarized in Table 2.11 of Section I for

the test data. All of the flaming sources are properly classified, with smoldering sources

235



classified properly in 88% of the tests. Nuisance and ambient sources are classified properly in
73% of the tests by the PCA evaluation of the sensor data. 27% of the nuisance source cases
are incorrectly identified as smoldering sources and hence represent false alarms. In contrast,
at least one of the commercial detectors respond to 97% of the flaming fires (one is missed)
and 25% of the non-flaming fires. At least one of the commercial detectors also respond to
11% of the nuisance sources as false alarms.

In addition to the improved classification rate, the time for detection of the signatures from
fire sources is significantly less with the measurements included and the PCA-based intelligence
than that for either of the commercial detectors. The time required for detection of flaming
fires is reduced by an average of 45 s (representing a decrease of 57%), with the detection time
for the PCA-based evaluation of the data being 6 to 244 s less than that for the first responding
commercial detector. The decrease in detection time was greater for the non-flaming fires,
having an average reduction of 245 s and a range of 182 to 332 s.

Two errors and ten false alarms out of 87 cases still has room for improvement. In
order to improve this ratio, additional sensors are required. These additional sensors need
to be chosen so that a greater difference between the scores for the nuisance and

smoldering cases are determined to permit an accurate distinction between each case.

3. Sensors
Sensor research has progressed to the point where it is possible to place a hundred
different gas sensors on a chip. While determining which sensors to use remains an open

question, such a chip coupled with multivariate statistical approaches holds great promise
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as a means of achieving further improvement in discriminating fire detection. The research
on gas sensor arrays is continuing in cooperation with Dr. Semancik’s group at NIST.
The research involves dynamic modeling and optimization of the temperature inputs to a
thin film, tin oxide microsensors; and, signal processing to extract information from the
raw sensor data. Recently, wavelets have been successfully applied to develop dynamic
models of the sensors. These models can then be used to predict how a sensor responds
to its temperature input, and then to optimize the temperature input. The optimization
approach involves using signal processing to measure the distance between signals
produced by different gas species making it easy to recognize the presence of a chemical
specie.

Three standard signal processing approaches have been investigated: Gram-
Schmidt orthogonalization, Fast Fourier Transforms, and the Haar wavelet. Two other
models based on olfaction have been reviewed. A paper describing the initial results of the

reviews has been submitted for publication (a copy is included in the Appendix).

4. Summary

As a result of the experimental effort, an early fire detector consisting of an array
of gas sensors appears feasible, with discrimination provided by a principal component
analysis (PCA). It has been shown that discrimination among a flaming fire, smoldering
fire, and a nuisance source can be accomplished using the PCA factors. However, many
questions still remain prior to the application of this technology as a means of early fire

detection. Due to the small number of sensors used, numerous false alarms occurred for
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nuisance sources, which were classified as smoldering fires. Adding more sensors should
help to alleviate this problem. Additional research is required to optimize the number and
types of sensors to be included in the array, while still providing the desired level of
sensitivity and discrimination ability. In addition, most of the data acquired has been from
experiments conducted with one type of source, e.g., a flaming source without a nuisance
source being present. Additional components are needed to assess the potential for a

nuisance source to mask a flaming or smoldering source.
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Abstract

Microsensor technology has progressed to the point where it is now fea-
sible to place several hundred sensors on a computer chip. Such a sensor
array can potentially be used in many applications including detecting haz-
ardous chemical emissions, food processsing, and fire detection. This paper
addresses an important aspect involved in microsensor applications, namely
how the sensor signals are processed. The problem treated involves classi-
fying whether a sensed signal is generated by one of four chemicals. Two
broad approaches to processing the sensor signals are discussed, one based
on classical signal processing approaches, and one based on a model of how
the olfactory system in animals functions. The classical approaches used in-
clude: Gram Schmidt orthogonalization, fast Fourier transforms, and Haar
wavelets. For the experimental signals treated, the classical approaches give
superior results compared to those produced by the olfactory model.

1. Introduction

The olfactory systems of animals and humans are exceptional at detecting
and classifying odors even when exposed to only trace amounts of an odorant.
Recordings from single olfactory receptors have shown that the receptors are

nstitute for Systems Research, Department of Chemical Engineering, University of
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2National Institute of Science and Technology, Chemical Science and Technology Lab-
oratory, Gaithersburg, MD 20899
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broadly tuned, and that they respond to a number of different odorants
[1]. This finding favors the hypothesis that a pattern of receptor firings
is the means of coding odorant presence, rather than the hypothesis that
each odorant is associated with one receptor type. The fact that olfactory
information is coded as a pattern requiring higher order recognition means
that signal processing plays an important role in odor detection. There is
a continuous turnover of olfactory receptors, as well as a high degree of
redundancy. As many as 1000 receptors can converge to a single processing
neuron in the olfactory bulb. It has been estimated that humans have on
the order of 1000 olfactory receptor groups (each with numerous individual
receptors) and that they are capable of distinguishing approximately 5000
odors. The number of receptor groups in the olfactory system is very much
larger than the minimum number needed to distinguish 5000 odors, and a
large redundancy exists. Nature seems to use numerous, non-specific sensors
and a good signal processing algorithm to achieve excellent odor detection
and classification.

In a recently published history of electronic noses [2] it is pointed out
that olfactory cells suffer from a number of deficiencies, including low sensi-
tivity (& 1 ppm), low specificity, and a short lifetime (about 22 days). Yet,
subsequent neural processing is able to increase sensitivity by about 3 orders
of magnitude, remove drift, and allow humans to discriminate between sev-
eral thousand odors. Considerable improvements in electronic noses can be
achieved both through improved signal processing and improved materials
[2]. 1t is also pointed out that to date no use has been made of the transient
information in a sensed signal through appropriate signal processing [2]. In
this paper approaches to using transient information from sensors to detect
the presence of a pure chemical species are discussed.

One significant target application for an artificial nose is detecting haz-
ardous emissions from chemical plants, particularly at trace levels. Addi-
tional important applications involve: detection and control of automobile
emissions, odor control in chemical and food processing, fire detection, and
possibly improved fault detection. For the target application it is envisioned
that the artificial nose would make use of an array of sensors and reside on a
computer chip. Such a chip could be placed at all potential sites for a leak in
a chemical plant, e.g. valves, flanges, pumps, etc. The chip would be located
outside of the process streams. Thus, extensive safety precautions would not
be required, as they would be if the chip were placed inside a process stream.
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The purpose of the chip would be to raise an alarm that a leak of a particular
chemical beyond a threshold is suspected. Such an alarm would be followed
by a team taking air samples back to the laboratory for detailed analytical
assay. If successful, the use of an artificial nose chip in this manner could
be a cost effective approach to the increasingly important problem of haz-
ardous emission detection. One of our research goals is to develop a design
methodology for a complete sensor array system. For detecting chemicals,
there is a trade-off between having one exceptionally accurate sensor for a
particular species, versus achieving the same result by using a number of less
accurate sensors, as the olfactory system does. It is this trade-off that we are
addressing in our research.

Today, one can duplicate the key parts of the olfactory system in silicon
to produce an artificial nose [3-9]. Indeed, commercial artificial noses have
appeared on the market [10-12]. From the information available it appears
that in some applications these commercial approaches target applications
where relatively strong odor concentrations are present, e.g. beer brewing,
and coffee roasting. However, some success with detection of trace quantities
in the parts per trillion range has been reported [13]. Also, the commercial
approaches appear to use a straightforward technique for signal processing
and classification, namely a backpropagation neural network, sometimes with
some signal conditioning. This paper discusses initial results from an interdis-
ciplinary research program whose objective is the development of an artificial
nose for use in the applications discussed above. There are several technical
components of an artificial nose that can be identified. These are the sen-
sors, signal processing, classification, and overall system design. Preliminary
results on using signal processing methods to help sharpen the interpretation
of the signals from a tin oxide micro-sensor are presented in this paper.

2. Modern Si-Based Sensor Arrays

Various forms of silicon-based, chemical sensor arrays are now being de-
veloped at research institutions around the world. In a number of cases, and
in at least a general sense, these are micromachined structures that serve
as analogue bases to the olfactory system for detection and monitoring of
gases and vapors. The integrated multiple elements provide for the use of
multiple active films of differing chemical functionality, within one device, to
achieve analyses of practical mixtures. The combined chemical and electronic
characteristics needed for these devices has led some to use custom process-
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ing methods for fabrication. However, for low cost production, and efficient
transfer of technology to sensor manufacturers, it is advantageous to keep
fabrication steps as standard as possible. This not only allows reproducible
production of large batches of sensor arrays at relatively low cost, but also
opens the door to using existing libraries of proven circuitry or control and
signal handling to be included, on chip, when appropriate.

While many different solid state sensing principles can be applied for
sensing gases, the responses examined in this study are from conductometric
(i.e.—gas-induced changes in conductance provide the response signal) mi-
crosensors developed at NIST using semiconducting oxide active films such
as SnO,, ZnO and TiO,. The microsensor arrays are constructed by micro-
machining a multi-level, Si-based CMOS (complementary metal oxide semi-
conductor) structure formed at a Si foundry according to our specific set
of design parameters. The post-fab micromachining produces an array of
suspended pixel elements with 4 exposed contact pads for electrical charac-
terization of the active film on each sensor [14]. A schematic of one such
micro-hotplate element is shown in Figure 1. The microsensor used in the
analysis here was 1 element of a 2 x 2 array, like that shown in Figure 1. The
suspended structure, which is 100 pym on a side, contains three functional
layers: a polysilicon resistor for heating, an aluminum hotplate for distribut-
ing heat and measuring the temperature, and four aluminum contact pads
for connection to the sensing film. These layers are separated by insulating
layers of SnOs.

Two inter-related schemes are used to impart selectivity to the sensor
elements [15]. The first approach involves using a variety of oxide films
deposited on the microhotplates within an array. These oxide films are ei-
ther used pure, or with surfaces that have been decorated with monolayer
regime (catalytic) metals. The compositionally-varied interfaces produce a
matrix of conductance changes, due to their differing adsorption/desorption
and electronic transport characteristics. For added selectivity, individually-
addressable temperature control of each pixel (each with its own built-in
heater and leads, for use between 20° C and 550° C) is used as a means to ex-
ercise kinetic manipulation of chemisorption processes. Due to the extremely
low mass (approximately 0.2ug) of the micromachined pixels, our microsen-
sor elements can each be thermally pulsed with a 1-5 msec time constant, in
addition to being held at (variable) fixed temperatures. Response character-
istics for varied array compositions and thermal schedules are collected as the
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data to be used in recognition and quantification. Although semiconducting
oxides are not highly specific, they do have the advantage of being quite ro-
bust, and thereby provide considerable latitude in tuning arrays for a wide
range of applications. Additional advantages for these CMOS microsensors
relate to their small size, which makes them relatively nonobtrusive even
when packaged, and requires only low power consumption for temperature
control.

While research studies on our arrays thus far have been concentrated on
technological aspects for single microelements, or small (2 x 2) arrays, many
tasks for hardware replication to larger arrays are straight-forward. The
signal recognition analysis that follows is based on single microsensor data,
and is a stepping stone toward the operation of larger systems under more
complex conditions.

3. Signal Processing Issues

3.1 Classical Approaches

Suppose a micro-hotplate sensor is heated according to a temperature
profile u(t) during the time interval [0, o). Suppose further that this takes
place in the presence of one of M different chemicals and that the conductance
exhibited by the sensor during the interval [0, Tp] depends on which of the
chemicals is present. Specifically: if chemical ¢ is present (1 < i < M), the
conductance of the sensor is given by the function s;(¢).

Signal processing provides the tools necessary to make an estimate as to
which chemical is present based on an observed conductance. That is, if we
observe a conductance “signal” r(¢) that is the result of a temperature profile
u(t) in the presence of chemical ¢, then 7(¢) is a (possibly noisy) version of
s;(t). Signal processing techniques can be used to make this classification
decision in an optimal fashion.

This is similar in many ways to the classic M-ary detection problem from
digital communication theory. That problem may be described as follows:
Every T seconds one of M signals is transmitted; if M = 2°, then each signal
can represent b bits of data, and communication at a rate of b/T" bits per
second is effected. Every T seconds the receiver observes a corrupted version
of the corresponding transmitted signal and makes a decision as to which was
the most likely transmitted waveform. In this way, the transmitted data can
be recovered with a probability of error that depends on the ratio of the power
of the transmitted signal and that of the noise. (See [16] for details.) We
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intend to use the insight gained from detection and communication theory
to attack the classification problem for the artificial nose.

A common approach used in communication systems is the representation

of the “signal set” —i.e., & = {s;(t) : 1 < i < M} —in terms of an orthonormal
basis. We now describe three methods based on this approach.
3.1.1 Gram-Schmidt Approach: Given § = {s;(t) : i = 1,2,..., M},
every signal in S can be expressed as a linear combination (i.e., a weighted
sum) of N < M orthonormal signals. The set of signals {¢;(t) : 1 < ¢ < N}
are said to be ortho-normal if they satisfy the following:

To _f1, ifi=j;
[ estertrar={ )

otherwise.

Orthonormal signals have a geometric interpretation; they are at “right
angles” to one another, in the sense that varying a signal’s ¢;(t)-component
has no effect on its ¢;(t)-component for ¢ # j. This will be made more clear
shortly.

Given the signals {s;(¢) : 1 < % < M} we must first construct the or-
thonormal “basis set” {¢;(t) : 1 <4 < N}. This can be accomplished via the
“Gram-Schmidt procedure,” [16, pp. 167-173] as follows:

(1.) Let N be the dimension of the signal set S = {s;(t) : 1 <1 < M}. This
means that S contains N linearly independent signals but does not contain
N + 1 linearly independent signals. Recall that the signals {z;(¢) : 1 <
i < n} are linearly independent if the only constants cy, co, . . ., ¢, satisfying
> czi(t) = 0 are ¢ = ¢2 = ... = 0. Assume without loss of generality
that {s1(t), s2(¢),. .., sn(t)} are linearly independent.

(2.) The signal ¢:(t) is just a scaled version of s,(t); specifically,

p1(2) = f}%—z (2)
where
= ® 20t 3)
(3.) Set i =2.
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(4.) If i = N + 1 then stop. Otherwise, the signal ¢;(t) is obtained by sub-
tracting off that part of s;(¢) that can be represented as a linear combination
of the signals {#:(t),...,#i-1(t)} and scaling appropriately. Specifically, let

) = 56) = 3 ) @

where
Sg;,' = ATO ¢g(t)$i(t)dt. (5)

Then ¢;(t) is given by

i) = £ ©

where

To

Ei= [ f(t)d. (7)

(5.) Increment 7 and go to step (4.).
The net result of this procedure is the basis set {¢;(¢) : 1 < ¢ < N} such

that

s1(t) S11 812 --- SN ¢1(2)
SQFt) _ 52.'1 32.,2 ce 82:N gbg.(t) , (8)
su(t) smMi Smz2 --- Smun/ \on(t)
where
To
5 = /0 si(t)o; (£)dt. (9)

We associate the vector s; = [si1, 85,2, . - - S;,v] With the signal s;(t). The
important characteristics of the signal s;(t) are replicated in the vector s;. In
particular, the “squared distance” between the signals s;(t) and s;(¢) is

To N
[s1(8) = sa(8))?dt = 3 |sig — sjul™ (10)

k=1

d*(s1,85) = /0
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Now suppose 7(t) = s;(t)+n(t). where: € {1,2,..., M} and n(t) is noise.
Our goal is to estimate ¢ from our observation of r(t). If n(t) is additive white
Gaussian noise (AWGN), then the optimal detection algorithm is to compute
the vector r = [r1,79,...,7r,] defined by

To
ry = /0 r(t)¢s () dt (11)
and to then make our decision ¢ according to the rule
X N
¢ =argmin{>  |rp — siel>: 1 <1 < M} (12)
k=1

The effectiveness of this approach is determined totally by the “distance
structure” between the signals - i.e., d*(s;, s;) defined above.

3.1.2 Discrete Fourier Transform Approach: The Gram-Schmidt ap-
proach uses an orthonormal signal set {¢;(¢) : 1 < ¢ < N} constructed from
the signals one expects to observe - S = {s;(t) : 1 <i < M}. An alternative
approach is to use complex sinusoids as the basis.

Suppose we sample a signal z(t) on the interval [0,Tp]. The result is a
sequence of n samples {z[k] : 0 < k¥ < n — 1}, where z[k] = z(kT;) and
T, is the sampling period. Associated with this sequence of n samples is
a sequence of n complex-valued numbers — the discrete Fourier transform
(DFT) of the sequence, denoted {X[m]: 0 <m < n — 1} and defined by

n-1
X[m] = Y z[k]e~d@r/nlkm, (13)
k=0
The samples {z[k] : 0 < k¥ < n — 1} can be recovered from the transform
components under the inverse-transformation, as follows:

1 nol
Z X [m]ed@m/mk (14)

N m=0
(A detailed explanation of DFT’s and their efficient implementation is
given in [17].)
We use the DFT of the sampled conductance profiles much as we used
the vectors obtained through the Gram-Schmidt procedure. Given the con-
ductance “signature” s;(t), we sample s;(t) and compute the associated DFT
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of length n - i.e., let o; = [0i0,0:1,.-.,0in-1] denote the DFT associated
with Si(t)Z

n-1
Oim = Z Si[k]e—j(%r/n)km. (15)
k=0
Here, s;[k] is the k** sample of the signature s;(t).

The M different DFT’s — one for each signal s;(t) — are computed in
advance and stored. When the conductance signal r(¢) is observed, the DFT
of r(t) is computed and is compared with each of the stored DF'I"s; let p =
(00, 01, - - - » pn—1] denote the DFT of the observed signal. Whichever stored
DFT is closest (in squared Euclidean distance) to that of r(t) is assumed
to be the DFT of the “correct” signature. More simply, we assume that
chemical 7 is present, where

N
§=argmin{2]pk—si,k|2:1 <i< M} (16)
k=1
3.1.3 Haar Wavelet Transform:

Over the past few years, wavelets have been used extensively in many
signal processing applications [18]-[20] such as signal and image analysis, fil-
tering, compression, decomposition, and more recently system identification
[21]. Indeed, the wavelet transform provides a means of overcoming the lim-
itations of Fourier analysis in defining a representation of one dimensional
signals with both time and frequency information. Wavelets are often com-
pared to the observation of a signal through a microscope: by increasing
the power of the microscope, one hides the gross changes but zooms in on
details. On the other hand, one gets the general shape of a signal without the
details by decreasing the power of the microscope. Although wavelet theory
is beyond the scope of this paper, a brief discussion of its essential properties
and definitions is given below.

Consider the basic function %(t), called a “mother wavelet”, and its
Fourier transform ¥(w), that satisfy the “admissibility condition”:

+00 9
/ IE(fuulalw = Cy < +00, (17)

which implies that
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/ W(2)dt = 0. (18)

One can perform dilation and translation operations on %(t) and create
a family of scaled and translated versions of the mother wavelet function:

aslt) = =4(—=) (19

lal

where o and b are the scaling and translation parameters. The continuous
wavelet transform (CWT) of a function f(t) is defined from R* x R to C by:

C’WTf(a,b)=ﬁ / f(t)w*(-t%b)dt (20)

where the asterisk stands for the complex conjugate.

In the discrete case, time-scale parameters are discretized such as @ =

a(')‘m/ Zand b=n-bo-af and the family of wavelets {¥m(t)} is given by:

Vmn(t) = ao_mﬂw(agmt —nby) n,meZ (21)

The discrete version of the wavelet transform (DWT) of function f(t) be-
comes:

DWT;(m,n) = ag™"? / F(8)0(ag™ — nbo)dt (22)

A standard and simple example of a function that defines an orthonormal
family of wavelets in the discrete case is the Haar function:

1 for0<t<1/2
h(t)=¢ -1 for1/2<t<1 (23)
0 otherwise
Amn(t) = 27™/29(27™t — n) (24)

The Haar transform, which is a linear operation, has been modified for
computational efficiency [22] and it can be obtained by the use of the matrix
wW:
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ho,0(0) hoo(1) hoo(N — 1)
ho1(0) ho1(1) ho1(N —1)
h1,2(0) hi2(1) hya(N —1)
ha1(0) ha,1(1) hoi(N —1)

ho o2 (0) oo hg,gz(N — 1)

hn1(0) -+ hmi(N—1)

hmom(0) -+« Amom(N —1)

where A, (k) comes from the sampling of Ay s(t), with & = 0,1,..., N —
1,0 £ m < logo(N) — 1 being the scale and 1 < n < 2™ the translation
parameter. hoo(k) =1, for k=10,1,..., N~ 1.

For each scale m one has 2™ rows corresponding to the translated versions
of the wavelet at this scale. Thus, the Haar transform of the sampled function
f over the interval [0, N — 1] is simply:

y=W[FO)f(1)... f(R)... F(N = D)) (26)

In this manner, the initial bidimensional representation of the DWT is
reduced to a one dimensional vector by concatenation of the scaled observa-
tions.

The Haar basis defined in egs. (23) and (24) is an orthonormal basis into
which a discrete function f can be decomposed. Similar to the approach
taken in Sections 3.1.1 and 3.1.2, this provides us with a finite-dimensional
representation of the chemical signatures against which we can compare the
transform of the observed conductance; once again, by minimizing the Eu-
clidean distance between the observed transform and the signature trans-
forms, we can determine which gas (if any) is present.

3.2 Approaches Based On Models Of The Olfactory System

R. Granger, G. Lynch and J. Ambros-Ingerson [23] have developed a
model to explain the interaction between the olfactory bulb and the piriform
cortex by observing rats. A team at Oklahoma State University is designing
a chip on which a modified version of this model is implemented [24]. A
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a chip on which a modified version of this model is implemented [24]. A
simulation of this chip has been used to classify data generated from sen-
sor experiments. The simulation is composed of two main parts, shown in
Figure 2. These parts are extensively connected by both feedforward and
feedback links. The first part is a 16-level thermometer coder which calcu-
lates a binary coding of the intensity of the main input components, thereby
simulating the olfactory bulb. Then, this binary code is input to the sec-
ond part which simulates the piriform cortex: this second part is a sparsely
connected network described by a sparse weight matrix, which produces a
non-binary output. A winner-take-all (WTA) procedure is applied to obtain
a final binary output of the model. Finally, the output is sent back to the
sparse matrix generating an inhibitory feedback which is combined with the
input signal, in order to remove the influence of the components that have
already been analyzed. The procedure is repeated as many times as neces-
sary, each time going into more detail in the signal than the previous time.
In this way, the model performs a hierarchical analysis of the original input,
determining at each level a binary output for the corresponding sub-class.

Initially, the model needs to be trained before it can recognize an odor.
Several signals for each class and sub-class are presented, and the training
consists of reinforcing the weights of the sparse matrix which have contributed
to the selection of the WTA. The underlying weights are increased at each
loop, and they are constrained to values between 1.0 and 3.2, which cor-
responds to saturation. Then, references for each level are defined. These
references are used to compare coded outputs, so that a choice can be made
at all nodes of this tree-structured hierarchical classifier. This choice is de-
termined by calculating the Hamming distance (number of different bits)
between the code and the reference. After training, the performance of the
classifier can be evaluated.

In addition to thermometer coding, an investigation of Gray coding [25]
which is more widely utilized in communication applications, was studied.
Gray coding uses n bits to code 2™ different levels with a constraint of “con-
tinuity” in the code, i.e. 2 successive levels are coded by changing only one
bit. In the communication field this code prevents small detection errors
from making large changes in the associated data. In our application, the
goal is to get very different codes for different gases, and at the same time to
identify a gas even in presence of disturbances. An advantage of using the
Gray code is that the size of our olfactory model can be reduced significantly,
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especially the dimensions of the sparse matrix since 4 bits are enough to code
16 different levels. Note that for the 16-bit thermometer coder two successive
level codes differ by one bit out of 16. The same levels coded with the 4-
bit Gray code will have a larger relative difference in their representation (1
bit out of 4), which might result in a classification that is sensitive to small
changes on the inputs.

4. Experimental Results

4.1 Data Collection

The sensing film on this microsensor was Pd-dosed SnQO,. The fabrication
details of this microsensor can be found in [26). The miniaturized device has
a thermal time constant of 1 msec and a thermal efficiency of 7.5° C/mW.
The fast thermal response time allows rapid variation of the sensor’s temper-
ature pulses. In this case temperatures within a cycle ranged from 20-550° C
in a linearly ramped manner with 5° C increments for successive pulses. The
cycle then repeated. In this pulsed mode, conductance is measured at room
temperature between each temperature pulse. All temperature pulses have
equal duration (100 msec) and are separated by 6 msec of delay to measure
the conductance. Four test gases (methanol, ethanol, formaldehyde, and ace-
tone) were examined for investigating different signal processing approaches.
Each gas was introduced to the sensor chamber at room temperature, and
saturated vapor pressures are assumed throughout the experiments. The
input temperature sequence is shown in Figure 3. Conductance is recorded
after each temperature pulse, and shown in Figure 4. It should be noted that
the duration of each heating pulse as well as the delay between them and the
specific pulse sequence will affect the final, cyclic conductance response.

Although the conductance responses, shown in Fig. 4, seem to repeat
identically for each cycle, the mean changes slightly from one period to an-
other. In addition, this phenomenon is amplified from week to week with
the occurrence of long term drift. Therefore, a statistical analysis, based on
mean and variance, would not be effective for signal identification. For the
cycles shown in Fig. 4, 107 conductance measurements were made for each
cycle. These measurements were resampled, leading to 32 samples per cycle
for use in the calculations. In addition to the raw data, the performance of
the signal processing methods was evaluated on noisy and drifting data. For
the noisy data, uniformly distributed white noise was added, with variances
of 10%, 20% and 30%, to test the capability of each scheme to deal with
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second test, drift was artificially added to the original signals. The drift was
added as a positive linear ramp varying from zero to half the mean of the
signal. This magnitude of drift was more drastic than that usually encoun-
tered experimentally. It was chosen in order to compare the different signal
processing methods. The conductance cycles were normalized for each cycle
to zero mean and unit variance before any processing. The normalization
prevents the signal processing approaches from being affected by the mean
and variance of the data. Note also that the drift effect is not removed by the
normalization. Finally, for the classical approaches as well as the olfactory
model, references for the classification task have to be defined. The refer-
ence for each of the four gases is an average cycle, calculated using the five
available experimental cycles for each gas in Figure 4.

4.2 Classical Approaches
We now turn to the techniques described in Sections 3.1.1, 3.1.2, and

3.1.3 for representing the signals of interest in terms of orthonormal bases.

4.2.1 Gram Schmidt Approach. First, the Gram-Schmidt approach was
applied to build an orthonormal basis. The basis is obtained by succes-
sively using the methanol, ethanol, acetone, and formaldehyde references.
The dimension of the signal space is n = 4 and the resulting basis is S =
{#1(8), d2(t), d3(t), $a(t)} as shown in Fig. 6. If all five cycles of methanol,
ethanol, acetone and formaldehyde are projected onto this basis, four clear
“clusters” of vectors, corresponding to the four gases, are shown, as in Fig. 7.
In Figure 7, the components are very well separated, and their projection is
characterized by a small variance within each region, compared to the dis-
tance between the regions. Note that in Figure 7b formaldehyde is the only
species to have four non-zero components. This results from using formalde-
hyde as the last component in generating the orthonormal basis. Figure 7b
also illustrates that one cannot separate methanol from ethanol using only
their ¢ and ¢4 components, since these components are approximately zero.
Figure 7 suggests that the Gram Schmidt approach is able to classify the
components based on their raw data without any difficulty.

Next, the robustness of the procedure to the effect of noise is investi-
gated. After normalizing the noisy data (Figure 5), they are projected onto
the {1 (t), ¢2(t), $a(t), ¢a(t)} basis; the results are shown in Fig. 8a and b.
No shift occurs between these noisy data and the references, since this de-
cornposition of 32 sampled signals into 4 vectors is a linear operation and we
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composition of 32 sampled signals into 4 vectors is a linear operation and we
consider a noise with zero mean. Note, however,that the variance of com-
ponents within the regions increases, due to the variance of the noise. This
increase in variance does not hinder classifying which gas is flowing past the
Sensor.

Finally, the Gram-Schmidt orthogonalization is tested on drifting data.
As shown in Fig. 9, a drift in the signals leads to a drift in their representa-
tion in the Gram-Schmidt basis. This sensitivity to drift in turn leads to a
deterioration in the classification performance, and it is an obvious weakness
of the Gram-Schmidt orthonormalization technique.

4.2.2. Fast Fourier Transform (FFT). The fast Fourier transform (FFT)
is an efficient algorithm to calculate the discrete Fourier transform (DFT)
when the number of samples is a power of two. With this approach, the
minimum number of FFT coefficients containing most of the information in
each signal is determined first. The minimum number is that which allows
one component to be separated from another, while allowing a signal from
the same class to be classified correctly. Keeping the lowest frequency coef-
ficients in an FFT tends to keep the main shape of the signal and remove
noise. It was determined experimentally that eight coefficients are sufficient
to classify the four gases correctly. In Figs. 10a, b and 11a, b, the distance
between the 32-coefficient DF'T of each cycle and the 8-coefficient DFT of
the reference signals is plotted. As can be seen, the distance between classes
shrinks when the number of coefficients is reduced from 32 to 8. It is clear
that a good separation is maintained even with an 8-point DFT. However,
below 8 DFT coefficients, one starts removing relevant information which
leads to a deterioration in classification capability.

When the same white noise is added (Figure 5), a comparison of the cor-
responding 8-coefficient DFT with the 8-coefficient DFT of the references can
be made to determine the performance of the FFT method with noise. The
result, shown in Fig. 12, confirms that noise does not affect the classification
ability of this technique very much. When the behavior of the DFT towards
the same drifting data as above is analyzed the results in Fig. 13 are observed.
Drift causes the data to move away from the references, which deteriorates
the classification performance. This observation can be expected, since drift
is nothing but a jlow frequency signal and therefore it is taken into account
when the eight lowest frequency coefficients are kept.
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4.2.3. Haar Wavelet Transform. The last classical technique used to
process the data is based on a wavelet transform. As explained in Section
3.1.3, the Haar Transform is a very efficient way to take advantage of wavelet
properties; moreover, this transform has small memory and computational
requirements. Once the Haar matrix of size 32 x 32 is defined, it can be
used for all the calculations. The first line of this matrix contains only 1’s
and the corresponding coefficient gives the mean of the analyzed signal. The
next lines correspond to scales 1 through 5 — scale ¢ has 2¢~! lines. The
projection of the original signal using the Haar matrix gives a 32-coefficient
vector, with subsets of coefficients corresponding to respective scales. The
higher the scale, the more details are captured.

Figure 14 shows the Haar Transform of each of the four references. Then,
using either less or more scales, one can reconstruct the input signals with
less or more accuracy (Figs. 15a to Figs. 15b). The transform is applied to
the normalized data to determine the “optimal” number of scales that would
clearly separate the four gases. Figures 16 to 20 demonstrate that keeping
both scales 3 and 4 leads to an efficient discrimination among gases using
only 12 coefficients.

Figures 17 and 20 point out an interesting fact: methanol and ethanol
are separated by removing scale 2. This result means that this scale is nec-
essary to reconstruct the original input, but its contribution tends to make
methanol and ethanol closer to each other. As with the Gram-Schmidt and
FFT approaches discussed above, we can easily achieve gas classification us-
ing the Haar Transform, with or without noise in the data, provided that
the signal to noise ratio is reasonable. However, the interesting property of
the present technique is that it can also handle the effect of drift in the data.
By keeping only scales 3 and 4, the very lowest frequencies are removed, and
these frequencies correspond to the major part of the drift effect. In addi-
tion most of the high frequencies are removed, which correspond to most
of the noise. Therefore, as observed in Figures 21 and 22 the component
regions stay very close to their original positions with noise and drift using
12 coefficients from scales 3 and 4.

4.3 Olfactory Model(s): In this section results for the Granger model
are presented. In our calculations the dimensions of the model were 32 bits
for the input, 16- bits for the thermometer coding (respectively, 4-bit Gray
coding) for the olfactory bulb with a 512x512 (respectively, 128x128) sparse
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matrix for the piriform cortex simulation, and 32 non-zero bits in the 512-bit
(respectively, 128-bit) model output. The references used so far for each gas
represent the second (bottom) level of the hierarchy in this model. However,
references are needed for the first (upper, coarser) level that contains two
classes: alcohols and non-alcohols. These references are obtained by cal-
culating an average cycle from the sum of methanol and ethanol to get the
alcohol class, and an average cycle from the sum of acetone and formaldehyde
to get the non-alcohol class. In addition, the matrix in the model is trained by
presenting the first 3 original cycles of each gas, after normalization. Then,
the test set consists of all 5 cycles for the 4 gases.

Since the sparse matrix in the Granger model is randomly generated,
a statistical analysis is carried out by using 10 different realizations of the
matrix. The model was tested first on the original data. Table 1 presents
statistical results on the Hamming distances between the references for 10
different sparse matrices, and compares performances of 16-bit thermome-
ter coding with 4-bit Gray code. The first row shows the average distance
and its standard deviation between alcohol and non-alcohol reference out-
puts, while the next 2 rows give the results obtained respectively from the
methanol/ethanol and the acetone/formaldehyde references outputs. For ac-
curate classification it is desirable to have a large average distance between
the classes, as well as a small variance. As can be seen in Table 1 there is a
trade off when comparing the thermometer and Gray coding. In some cases
there is a large distance between classes, but there is also a large variance.
Although the distance depends on the realizations of the sparce matrices, the
small values obtained for the methanol/ethanol outputs, are the result of the
strong similarity of these two signals. Note that results are totally different
between the 16-bit thermometer coding and the 4-bit Gray code. The Gray
code uses a minimum number of bits to encode the amplitude of the signal,
while thermometer coding is a more robust but less efficient method, from a
compression point of view.

Additional statistical results on classifying the original, noisy and drifting
data are presented in Tables 2 to 4. The following observations about these
results can be made. First, both methods give comparable results on the
original data, although the performance of the thermometer coding is better.
In the first level classification using both coding approaches, the olfactory
model doesn’t have any difficulty in making a classification. At the finer level
however, there is some confusion, especially between methanol and ethanol.
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This result can be expected for the thermometer coding since the reference
outputs were very close (Table 1). The sensitivity of the Gray code is also
demonstrated in Tables 2 to 4. Second, both approaches are very sensitive to
noise and drift. In fact, even the first level of the hierarchical classification
gets affected by a small noise (10% of the variance of the original signals)

and by drift.

5. Discussion and Conclusions

Both the classical and biologically inspired signal processing approaches
evaluated in this paper are very different. The signal processing methods
perform a compression of the information contained in the sensor output.
Indeed, no matter what classical technique is used (Gram-Schmidt, FFT,
Wavelets), the number of coeficients describing the signal can be shrunk
enough to help the classification task without deteriorating the relevant in-
formation that remains. On the other hand, the Granger approach provides a
model based on a mammalian olfactory system that analyzes an odor through
a hierarchical process. Knowledge of human (and animal) sensory coding has
proven to be very useful, especially in vision and audio processing, and this
fact motivated our study of this approach. Both the classical and Granger
approaches promise to be easy to implement in silicon. The Granger model
mainly deals with binary numbers and it only needs a weight matrix which is
trained off-line, and then stored for later real-time classification. Operations
are basically inner products and winner-take-all computations. In the Haar
Transform, initially a matrix is needed (whose size depends on the length
of original cycles) that contains the Haar wavelet basis vectors. Then, inner
products are calculated during the processing. The Gram-Schmidt procedure
needs a pre-computation of the basis vectors using previous data and then
inner products are calculated. The FFT technique requires a real-time Fast
Fourier Transform, which is a commonly used circuit.

For the sensor responses studied here the classical methods give the best
results, and the wavelet transform (Haar Transform) was the best. The Haar
Transform can efficiently compress information while removing the noise and
drift effects, at least in the range encountered for the sensor studied.
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Figure 1. Scanning electron micrograph showing a
suspended microhotplate structure with 4
top-surface contact pads for conductance
measurements on an active film. Top and
cross-sectionnal view schematics (not to
scale) are shown in the lower panel.
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Thermometer 16 Gray 4
Alc/Non-Alc. 21.5 (4) 8 (0)
Met/Et 4.5 (2) 3(2)
Acet/Form 13 (2.6) 7.75 (1.3)

Table 1 : Statistical results - mean (standard deviation) - on the distance between references
obtained using the 16 level thermometer coding and the 4 bit Gray coding
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Thermometer 16 Gray 4
alcohol 100 100
non-alcohol 100 100
methanol 100 50
ethanol 87 87
acetons 100 100
formaldehyde 100 75

Table 2 : Statistical results (in percentage) on the gas classification using the 16 level
thermometer coding and the 4 bit Gray coding on original data.
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Thermometer 16 Gray 4
alcohol 100 100
non-alcohol 100 100
methanol 50 62
ethanoi 87 62
acetone 62 75
formaldehyde 100 75

Table 3 : Statistical results (in percentage) on the gas classification using the 16 level
thermometer coding and the 4 bit Gray coding on noisy data.
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Thermometer 16 Gray 4
alcohol 100 100
non-aicohol 81 69
methanol 100 62
ethanol 75 62
acetone 50 50
formaldehyde 100 37

Table 4: Statistical results (in percentage) on the gas classification using the 16 level
thermometer coding and the 4 bit Gray coding on drifting data.
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Research was conducted using multiple sensors with algorithm to detect fires more quickly than currently available smoke detectors
while also decreasing the susceptibility to unnecessary alarms. The effort involved the production of signatures from three types of
sources; flaming fires, non-flaming fires and non-fire, nuisance sources, followed by analysis to recognize signature patterns for the
three type of sources. The first phases of research consisted of establishing the feasibility of distinguishing between signatures from
fire and non-fire sources using a small-scale apparatus. The second phase consisted of introducing the signatures in a 12 ft square
room with a height of 8 ft. Measurements included CO, CO,, and O, concentrations, presence of oxidizable gases, light obscuration
and temperature. The signatures measured could be associated with the three types of sources. Using a multivariate statistical analysis,
the response time of a prototype detector was appreciably less than that of commercially available detectors, with a significant reduction
in unnecessary alarm susceptibility. In the third phase, pairs of sources were provided simultaneously to determine if a nuisance source
could mask the signature from a fire source and if two nuisance sources provide a signature similar to that from a fire. Results indicate
that the ratio of the CO to CO, concentrations is representative of flaming fire sources and to a limited extent for non-flaming fire
sources, independent of the presence of a nuisance source.
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